Gap probabilities for the cardinal sine
- Autores
- Antezana, Jorge Abel; Buckley, Jeremiah; Marzo, Jorge; Olsen, Jan-Fredrik
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the zero sets of random analytic functions generated by a sum of the cardinal sine functions which form an orthonormal basis for the Paley-Wiener space. As a model case, we consider real-valued Gaussian coefficients. It is shown that the asymptotic probability that there is no zero in a bounded interval decays exponentially as a function of the length.
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
Fil: Buckley, Jeremiah. Universidad de Barcelona; España
Fil: Marzo, Jorge. Universidad de Barcelona; España
Fil: Olsen, Jan-Fredrik. Lund University; Suecia - Materia
-
Gaussian Analytic Functions
Paley Wiener
Gap Probabilities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18926
Ver los metadatos del registro completo
id |
CONICETDig_169bbb144eb30b93014fde076430c575 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18926 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Gap probabilities for the cardinal sineAntezana, Jorge AbelBuckley, JeremiahMarzo, JorgeOlsen, Jan-FredrikGaussian Analytic FunctionsPaley WienerGap Probabilitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the zero sets of random analytic functions generated by a sum of the cardinal sine functions which form an orthonormal basis for the Paley-Wiener space. As a model case, we consider real-valued Gaussian coefficients. It is shown that the asymptotic probability that there is no zero in a bounded interval decays exponentially as a function of the length.Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; ArgentinaFil: Buckley, Jeremiah. Universidad de Barcelona; EspañaFil: Marzo, Jorge. Universidad de Barcelona; EspañaFil: Olsen, Jan-Fredrik. Lund University; SueciaElsevier2012-06-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18926Antezana, Jorge Abel; Buckley, Jeremiah; Marzo, Jorge; Olsen, Jan-Fredrik; Gap probabilities for the cardinal sine; Elsevier; Journal Of Mathematical Analysis And Applications; 396; 2; 29-6-2012; 466-4720022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X12005112info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.06.022info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:59:17Zoai:ri.conicet.gov.ar:11336/18926instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:59:17.947CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Gap probabilities for the cardinal sine |
title |
Gap probabilities for the cardinal sine |
spellingShingle |
Gap probabilities for the cardinal sine Antezana, Jorge Abel Gaussian Analytic Functions Paley Wiener Gap Probabilities |
title_short |
Gap probabilities for the cardinal sine |
title_full |
Gap probabilities for the cardinal sine |
title_fullStr |
Gap probabilities for the cardinal sine |
title_full_unstemmed |
Gap probabilities for the cardinal sine |
title_sort |
Gap probabilities for the cardinal sine |
dc.creator.none.fl_str_mv |
Antezana, Jorge Abel Buckley, Jeremiah Marzo, Jorge Olsen, Jan-Fredrik |
author |
Antezana, Jorge Abel |
author_facet |
Antezana, Jorge Abel Buckley, Jeremiah Marzo, Jorge Olsen, Jan-Fredrik |
author_role |
author |
author2 |
Buckley, Jeremiah Marzo, Jorge Olsen, Jan-Fredrik |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Gaussian Analytic Functions Paley Wiener Gap Probabilities |
topic |
Gaussian Analytic Functions Paley Wiener Gap Probabilities |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the zero sets of random analytic functions generated by a sum of the cardinal sine functions which form an orthonormal basis for the Paley-Wiener space. As a model case, we consider real-valued Gaussian coefficients. It is shown that the asymptotic probability that there is no zero in a bounded interval decays exponentially as a function of the length. Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina Fil: Buckley, Jeremiah. Universidad de Barcelona; España Fil: Marzo, Jorge. Universidad de Barcelona; España Fil: Olsen, Jan-Fredrik. Lund University; Suecia |
description |
We study the zero sets of random analytic functions generated by a sum of the cardinal sine functions which form an orthonormal basis for the Paley-Wiener space. As a model case, we consider real-valued Gaussian coefficients. It is shown that the asymptotic probability that there is no zero in a bounded interval decays exponentially as a function of the length. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-06-29 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18926 Antezana, Jorge Abel; Buckley, Jeremiah; Marzo, Jorge; Olsen, Jan-Fredrik; Gap probabilities for the cardinal sine; Elsevier; Journal Of Mathematical Analysis And Applications; 396; 2; 29-6-2012; 466-472 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18926 |
identifier_str_mv |
Antezana, Jorge Abel; Buckley, Jeremiah; Marzo, Jorge; Olsen, Jan-Fredrik; Gap probabilities for the cardinal sine; Elsevier; Journal Of Mathematical Analysis And Applications; 396; 2; 29-6-2012; 466-472 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X12005112 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.06.022 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782312293859328 |
score |
12.982451 |