Gap probabilities for the cardinal sine
- Autores
- Antezana, Jorge Abel; Buckley, Jeremiah; Marzo, Jorge; Olsen, Jan-Fredrik
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the zero sets of random analytic functions generated by a sum of the cardinal sine functions which form an orthonormal basis for the Paley-Wiener space. As a model case, we consider real-valued Gaussian coefficients. It is shown that the asymptotic probability that there is no zero in a bounded interval decays exponentially as a function of the length.
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
Fil: Buckley, Jeremiah. Universidad de Barcelona; España
Fil: Marzo, Jorge. Universidad de Barcelona; España
Fil: Olsen, Jan-Fredrik. Lund University; Suecia - Materia
-
Gaussian Analytic Functions
Paley Wiener
Gap Probabilities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18926
Ver los metadatos del registro completo
| id |
CONICETDig_169bbb144eb30b93014fde076430c575 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18926 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Gap probabilities for the cardinal sineAntezana, Jorge AbelBuckley, JeremiahMarzo, JorgeOlsen, Jan-FredrikGaussian Analytic FunctionsPaley WienerGap Probabilitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the zero sets of random analytic functions generated by a sum of the cardinal sine functions which form an orthonormal basis for the Paley-Wiener space. As a model case, we consider real-valued Gaussian coefficients. It is shown that the asymptotic probability that there is no zero in a bounded interval decays exponentially as a function of the length.Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; ArgentinaFil: Buckley, Jeremiah. Universidad de Barcelona; EspañaFil: Marzo, Jorge. Universidad de Barcelona; EspañaFil: Olsen, Jan-Fredrik. Lund University; SueciaElsevier2012-06-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18926Antezana, Jorge Abel; Buckley, Jeremiah; Marzo, Jorge; Olsen, Jan-Fredrik; Gap probabilities for the cardinal sine; Elsevier; Journal Of Mathematical Analysis And Applications; 396; 2; 29-6-2012; 466-4720022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X12005112info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.06.022info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:54:15Zoai:ri.conicet.gov.ar:11336/18926instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:54:16.096CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Gap probabilities for the cardinal sine |
| title |
Gap probabilities for the cardinal sine |
| spellingShingle |
Gap probabilities for the cardinal sine Antezana, Jorge Abel Gaussian Analytic Functions Paley Wiener Gap Probabilities |
| title_short |
Gap probabilities for the cardinal sine |
| title_full |
Gap probabilities for the cardinal sine |
| title_fullStr |
Gap probabilities for the cardinal sine |
| title_full_unstemmed |
Gap probabilities for the cardinal sine |
| title_sort |
Gap probabilities for the cardinal sine |
| dc.creator.none.fl_str_mv |
Antezana, Jorge Abel Buckley, Jeremiah Marzo, Jorge Olsen, Jan-Fredrik |
| author |
Antezana, Jorge Abel |
| author_facet |
Antezana, Jorge Abel Buckley, Jeremiah Marzo, Jorge Olsen, Jan-Fredrik |
| author_role |
author |
| author2 |
Buckley, Jeremiah Marzo, Jorge Olsen, Jan-Fredrik |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Gaussian Analytic Functions Paley Wiener Gap Probabilities |
| topic |
Gaussian Analytic Functions Paley Wiener Gap Probabilities |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We study the zero sets of random analytic functions generated by a sum of the cardinal sine functions which form an orthonormal basis for the Paley-Wiener space. As a model case, we consider real-valued Gaussian coefficients. It is shown that the asymptotic probability that there is no zero in a bounded interval decays exponentially as a function of the length. Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina Fil: Buckley, Jeremiah. Universidad de Barcelona; España Fil: Marzo, Jorge. Universidad de Barcelona; España Fil: Olsen, Jan-Fredrik. Lund University; Suecia |
| description |
We study the zero sets of random analytic functions generated by a sum of the cardinal sine functions which form an orthonormal basis for the Paley-Wiener space. As a model case, we consider real-valued Gaussian coefficients. It is shown that the asymptotic probability that there is no zero in a bounded interval decays exponentially as a function of the length. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-06-29 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18926 Antezana, Jorge Abel; Buckley, Jeremiah; Marzo, Jorge; Olsen, Jan-Fredrik; Gap probabilities for the cardinal sine; Elsevier; Journal Of Mathematical Analysis And Applications; 396; 2; 29-6-2012; 466-472 0022-247X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/18926 |
| identifier_str_mv |
Antezana, Jorge Abel; Buckley, Jeremiah; Marzo, Jorge; Olsen, Jan-Fredrik; Gap probabilities for the cardinal sine; Elsevier; Journal Of Mathematical Analysis And Applications; 396; 2; 29-6-2012; 466-472 0022-247X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X12005112 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.06.022 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598250914840576 |
| score |
13.25334 |