Gap probabilities for the cardinal sine

Autores
Antezana, Jorge Abel; Buckley, Jeremiah; Marzo, Jorge; Olsen, Jan-Fredrik
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the zero sets of random analytic functions generated by a sum of the cardinal sine functions which form an orthonormal basis for the Paley-Wiener space. As a model case, we consider real-valued Gaussian coefficients. It is shown that the asymptotic probability that there is no zero in a bounded interval decays exponentially as a function of the length.
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
Fil: Buckley, Jeremiah. Universidad de Barcelona; España
Fil: Marzo, Jorge. Universidad de Barcelona; España
Fil: Olsen, Jan-Fredrik. Lund University; Suecia
Materia
Gaussian Analytic Functions
Paley Wiener
Gap Probabilities
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18926

id CONICETDig_169bbb144eb30b93014fde076430c575
oai_identifier_str oai:ri.conicet.gov.ar:11336/18926
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Gap probabilities for the cardinal sineAntezana, Jorge AbelBuckley, JeremiahMarzo, JorgeOlsen, Jan-FredrikGaussian Analytic FunctionsPaley WienerGap Probabilitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the zero sets of random analytic functions generated by a sum of the cardinal sine functions which form an orthonormal basis for the Paley-Wiener space. As a model case, we consider real-valued Gaussian coefficients. It is shown that the asymptotic probability that there is no zero in a bounded interval decays exponentially as a function of the length.Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; ArgentinaFil: Buckley, Jeremiah. Universidad de Barcelona; EspañaFil: Marzo, Jorge. Universidad de Barcelona; EspañaFil: Olsen, Jan-Fredrik. Lund University; SueciaElsevier2012-06-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18926Antezana, Jorge Abel; Buckley, Jeremiah; Marzo, Jorge; Olsen, Jan-Fredrik; Gap probabilities for the cardinal sine; Elsevier; Journal Of Mathematical Analysis And Applications; 396; 2; 29-6-2012; 466-4720022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X12005112info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.06.022info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:59:17Zoai:ri.conicet.gov.ar:11336/18926instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:59:17.947CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Gap probabilities for the cardinal sine
title Gap probabilities for the cardinal sine
spellingShingle Gap probabilities for the cardinal sine
Antezana, Jorge Abel
Gaussian Analytic Functions
Paley Wiener
Gap Probabilities
title_short Gap probabilities for the cardinal sine
title_full Gap probabilities for the cardinal sine
title_fullStr Gap probabilities for the cardinal sine
title_full_unstemmed Gap probabilities for the cardinal sine
title_sort Gap probabilities for the cardinal sine
dc.creator.none.fl_str_mv Antezana, Jorge Abel
Buckley, Jeremiah
Marzo, Jorge
Olsen, Jan-Fredrik
author Antezana, Jorge Abel
author_facet Antezana, Jorge Abel
Buckley, Jeremiah
Marzo, Jorge
Olsen, Jan-Fredrik
author_role author
author2 Buckley, Jeremiah
Marzo, Jorge
Olsen, Jan-Fredrik
author2_role author
author
author
dc.subject.none.fl_str_mv Gaussian Analytic Functions
Paley Wiener
Gap Probabilities
topic Gaussian Analytic Functions
Paley Wiener
Gap Probabilities
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the zero sets of random analytic functions generated by a sum of the cardinal sine functions which form an orthonormal basis for the Paley-Wiener space. As a model case, we consider real-valued Gaussian coefficients. It is shown that the asymptotic probability that there is no zero in a bounded interval decays exponentially as a function of the length.
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
Fil: Buckley, Jeremiah. Universidad de Barcelona; España
Fil: Marzo, Jorge. Universidad de Barcelona; España
Fil: Olsen, Jan-Fredrik. Lund University; Suecia
description We study the zero sets of random analytic functions generated by a sum of the cardinal sine functions which form an orthonormal basis for the Paley-Wiener space. As a model case, we consider real-valued Gaussian coefficients. It is shown that the asymptotic probability that there is no zero in a bounded interval decays exponentially as a function of the length.
publishDate 2012
dc.date.none.fl_str_mv 2012-06-29
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18926
Antezana, Jorge Abel; Buckley, Jeremiah; Marzo, Jorge; Olsen, Jan-Fredrik; Gap probabilities for the cardinal sine; Elsevier; Journal Of Mathematical Analysis And Applications; 396; 2; 29-6-2012; 466-472
0022-247X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18926
identifier_str_mv Antezana, Jorge Abel; Buckley, Jeremiah; Marzo, Jorge; Olsen, Jan-Fredrik; Gap probabilities for the cardinal sine; Elsevier; Journal Of Mathematical Analysis And Applications; 396; 2; 29-6-2012; 466-472
0022-247X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X12005112
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.06.022
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782312293859328
score 12.982451