Gap probabilities for the cardinal sine

Autores
Antezana, Jorge Abel; Buckley, Jeremiah; Marzo, Jordi; Olsen, Jan Fredrik
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the zero sets of random analytic functions generated by a sum of the cardinal sine functions which form an orthonormal basis for the Paley-Wiener space. As a model case, we consider real-valued Gaussian coefficients. It is shown that the asymptotic probability that there is no zero in a bounded interval decays exponentially as a function of the length.
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Matemática
Gap probabilities
Gaussian analytic functions
Paley-Wiener
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/84075

id SEDICI_293e73c38229e9f1c351287adda22ca8
oai_identifier_str oai:sedici.unlp.edu.ar:10915/84075
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Gap probabilities for the cardinal sineAntezana, Jorge AbelBuckley, JeremiahMarzo, JordiOlsen, Jan FredrikCiencias ExactasMatemáticaGap probabilitiesGaussian analytic functionsPaley-WienerWe study the zero sets of random analytic functions generated by a sum of the cardinal sine functions which form an orthonormal basis for the Paley-Wiener space. As a model case, we consider real-valued Gaussian coefficients. It is shown that the asymptotic probability that there is no zero in a bounded interval decays exponentially as a function of the length.Facultad de Ciencias Exactas2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf466-472http://sedici.unlp.edu.ar/handle/10915/84075enginfo:eu-repo/semantics/altIdentifier/issn/0022-247Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.06.022info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:00Zoai:sedici.unlp.edu.ar:10915/84075Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:00.779SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Gap probabilities for the cardinal sine
title Gap probabilities for the cardinal sine
spellingShingle Gap probabilities for the cardinal sine
Antezana, Jorge Abel
Ciencias Exactas
Matemática
Gap probabilities
Gaussian analytic functions
Paley-Wiener
title_short Gap probabilities for the cardinal sine
title_full Gap probabilities for the cardinal sine
title_fullStr Gap probabilities for the cardinal sine
title_full_unstemmed Gap probabilities for the cardinal sine
title_sort Gap probabilities for the cardinal sine
dc.creator.none.fl_str_mv Antezana, Jorge Abel
Buckley, Jeremiah
Marzo, Jordi
Olsen, Jan Fredrik
author Antezana, Jorge Abel
author_facet Antezana, Jorge Abel
Buckley, Jeremiah
Marzo, Jordi
Olsen, Jan Fredrik
author_role author
author2 Buckley, Jeremiah
Marzo, Jordi
Olsen, Jan Fredrik
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Matemática
Gap probabilities
Gaussian analytic functions
Paley-Wiener
topic Ciencias Exactas
Matemática
Gap probabilities
Gaussian analytic functions
Paley-Wiener
dc.description.none.fl_txt_mv We study the zero sets of random analytic functions generated by a sum of the cardinal sine functions which form an orthonormal basis for the Paley-Wiener space. As a model case, we consider real-valued Gaussian coefficients. It is shown that the asymptotic probability that there is no zero in a bounded interval decays exponentially as a function of the length.
Facultad de Ciencias Exactas
description We study the zero sets of random analytic functions generated by a sum of the cardinal sine functions which form an orthonormal basis for the Paley-Wiener space. As a model case, we consider real-valued Gaussian coefficients. It is shown that the asymptotic probability that there is no zero in a bounded interval decays exponentially as a function of the length.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/84075
url http://sedici.unlp.edu.ar/handle/10915/84075
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0022-247X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.06.022
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
466-472
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616032355876864
score 13.070432