Classification of Nilsoliton metrics in dimension seven

Autores
Fernandez Culma, Edison Alberto
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The aim of this paper is to classify Ricci soliton metrics on 7-dimensional nilpotent Lie groups. It can be considered as a continuation of our paper in Fernández Culma (2012). To this end, we use the classification of 7-dimensional real nilpotent Lie algebras given by Ming-Peng Gong in his Ph.D thesis and some techniques from the results of Michael Jablonski (2010, 2012) and of Yuri Nikolayevsky (2011). Of the 9 one-parameter families and 140 isolated 7-dimensional indecomposable real nilpotent Lie algebras, we have 99 nilsoliton metrics given in an explicit form and 7 one-parameter families admitting nilsoliton metrics. Our classification is the result of a case-by-case analysis, so many illustrative examples are carefully developed to explain how to obtain the main result.
Fil: Fernandez Culma, Edison Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Materia
Einstein Manifolds
Einstein Nilradical
Nilsolitons
Geometric Invariant Theory
Nilpotent Lie Algebras
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/31943

id CONICETDig_15ea441c9acd21d334c0688abb3fd844
oai_identifier_str oai:ri.conicet.gov.ar:11336/31943
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Classification of Nilsoliton metrics in dimension sevenFernandez Culma, Edison AlbertoEinstein ManifoldsEinstein NilradicalNilsolitonsGeometric Invariant TheoryNilpotent Lie Algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The aim of this paper is to classify Ricci soliton metrics on 7-dimensional nilpotent Lie groups. It can be considered as a continuation of our paper in Fernández Culma (2012). To this end, we use the classification of 7-dimensional real nilpotent Lie algebras given by Ming-Peng Gong in his Ph.D thesis and some techniques from the results of Michael Jablonski (2010, 2012) and of Yuri Nikolayevsky (2011). Of the 9 one-parameter families and 140 isolated 7-dimensional indecomposable real nilpotent Lie algebras, we have 99 nilsoliton metrics given in an explicit form and 7 one-parameter families admitting nilsoliton metrics. Our classification is the result of a case-by-case analysis, so many illustrative examples are carefully developed to explain how to obtain the main result.Fil: Fernandez Culma, Edison Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaElsevier Science2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31943Classification of Nilsoliton metrics in dimension seven; Elsevier Science; Journal Of Geometry And Physics; 86; 12-2014; 164-1790393-0440CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2014.07.032info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0393044014001739info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:25:23Zoai:ri.conicet.gov.ar:11336/31943instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:25:23.611CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Classification of Nilsoliton metrics in dimension seven
title Classification of Nilsoliton metrics in dimension seven
spellingShingle Classification of Nilsoliton metrics in dimension seven
Fernandez Culma, Edison Alberto
Einstein Manifolds
Einstein Nilradical
Nilsolitons
Geometric Invariant Theory
Nilpotent Lie Algebras
title_short Classification of Nilsoliton metrics in dimension seven
title_full Classification of Nilsoliton metrics in dimension seven
title_fullStr Classification of Nilsoliton metrics in dimension seven
title_full_unstemmed Classification of Nilsoliton metrics in dimension seven
title_sort Classification of Nilsoliton metrics in dimension seven
dc.creator.none.fl_str_mv Fernandez Culma, Edison Alberto
author Fernandez Culma, Edison Alberto
author_facet Fernandez Culma, Edison Alberto
author_role author
dc.subject.none.fl_str_mv Einstein Manifolds
Einstein Nilradical
Nilsolitons
Geometric Invariant Theory
Nilpotent Lie Algebras
topic Einstein Manifolds
Einstein Nilradical
Nilsolitons
Geometric Invariant Theory
Nilpotent Lie Algebras
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The aim of this paper is to classify Ricci soliton metrics on 7-dimensional nilpotent Lie groups. It can be considered as a continuation of our paper in Fernández Culma (2012). To this end, we use the classification of 7-dimensional real nilpotent Lie algebras given by Ming-Peng Gong in his Ph.D thesis and some techniques from the results of Michael Jablonski (2010, 2012) and of Yuri Nikolayevsky (2011). Of the 9 one-parameter families and 140 isolated 7-dimensional indecomposable real nilpotent Lie algebras, we have 99 nilsoliton metrics given in an explicit form and 7 one-parameter families admitting nilsoliton metrics. Our classification is the result of a case-by-case analysis, so many illustrative examples are carefully developed to explain how to obtain the main result.
Fil: Fernandez Culma, Edison Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
description The aim of this paper is to classify Ricci soliton metrics on 7-dimensional nilpotent Lie groups. It can be considered as a continuation of our paper in Fernández Culma (2012). To this end, we use the classification of 7-dimensional real nilpotent Lie algebras given by Ming-Peng Gong in his Ph.D thesis and some techniques from the results of Michael Jablonski (2010, 2012) and of Yuri Nikolayevsky (2011). Of the 9 one-parameter families and 140 isolated 7-dimensional indecomposable real nilpotent Lie algebras, we have 99 nilsoliton metrics given in an explicit form and 7 one-parameter families admitting nilsoliton metrics. Our classification is the result of a case-by-case analysis, so many illustrative examples are carefully developed to explain how to obtain the main result.
publishDate 2014
dc.date.none.fl_str_mv 2014-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/31943
Classification of Nilsoliton metrics in dimension seven; Elsevier Science; Journal Of Geometry And Physics; 86; 12-2014; 164-179
0393-0440
CONICET Digital
CONICET
url http://hdl.handle.net/11336/31943
identifier_str_mv Classification of Nilsoliton metrics in dimension seven; Elsevier Science; Journal Of Geometry And Physics; 86; 12-2014; 164-179
0393-0440
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2014.07.032
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0393044014001739
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847427164226453504
score 12.589754