Classification of 7-dimensional einstein nilradicals
- Autores
- Fernández Culma, Edison Alberto
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The problem of classifying Einstein solvmanifolds, or equivalently, Ricci soliton nilmanifolds, is known to be equivalent to a question on the variety N n(ℂ) of n-dimensional complex nilpotent Lie algebra laws. Namely, one has to determine which GL n(ℂ)-orbits in N n(ℂ) have a critical point of the squared norm of the moment map. In this paper, we give a classification result of such distinguished orbits for n = 7. The set N 7(ℂ)/GL 7(ℂ) is formed by 148 nilpotent Lie algebras and 6 one-parameter families of pairwise non-isomorphic nilpotent Lie algebras. We have applied to each Lie algebra one of three main techniques to decide whether it has a distinguished orbit or not.
Fil: Fernández Culma, Edison Alberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
EINSTEIN MANIFOLDS
EINSTEIN NILRADICAL
NILSOLITONS
GEOMETRIC INVARIANT THEORY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/198380
Ver los metadatos del registro completo
id |
CONICETDig_a74a4dce9891eba0a6dcd5e74bede891 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/198380 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Classification of 7-dimensional einstein nilradicalsFernández Culma, Edison AlbertoEINSTEIN MANIFOLDSEINSTEIN NILRADICALNILSOLITONSGEOMETRIC INVARIANT THEORYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The problem of classifying Einstein solvmanifolds, or equivalently, Ricci soliton nilmanifolds, is known to be equivalent to a question on the variety N n(ℂ) of n-dimensional complex nilpotent Lie algebra laws. Namely, one has to determine which GL n(ℂ)-orbits in N n(ℂ) have a critical point of the squared norm of the moment map. In this paper, we give a classification result of such distinguished orbits for n = 7. The set N 7(ℂ)/GL 7(ℂ) is formed by 148 nilpotent Lie algebras and 6 one-parameter families of pairwise non-isomorphic nilpotent Lie algebras. We have applied to each Lie algebra one of three main techniques to decide whether it has a distinguished orbit or not.Fil: Fernández Culma, Edison Alberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaBirkhauser Boston Inc2012-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/198380Fernández Culma, Edison Alberto; Classification of 7-dimensional einstein nilradicals; Birkhauser Boston Inc; Transformation Groups; 17; 3; 8-2012; 639-6561083-43621531-586XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00031-012-9186-5info:eu-repo/semantics/altIdentifier/doi/10.1007/s00031-012-9186-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:14:34Zoai:ri.conicet.gov.ar:11336/198380instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:14:34.464CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Classification of 7-dimensional einstein nilradicals |
title |
Classification of 7-dimensional einstein nilradicals |
spellingShingle |
Classification of 7-dimensional einstein nilradicals Fernández Culma, Edison Alberto EINSTEIN MANIFOLDS EINSTEIN NILRADICAL NILSOLITONS GEOMETRIC INVARIANT THEORY |
title_short |
Classification of 7-dimensional einstein nilradicals |
title_full |
Classification of 7-dimensional einstein nilradicals |
title_fullStr |
Classification of 7-dimensional einstein nilradicals |
title_full_unstemmed |
Classification of 7-dimensional einstein nilradicals |
title_sort |
Classification of 7-dimensional einstein nilradicals |
dc.creator.none.fl_str_mv |
Fernández Culma, Edison Alberto |
author |
Fernández Culma, Edison Alberto |
author_facet |
Fernández Culma, Edison Alberto |
author_role |
author |
dc.subject.none.fl_str_mv |
EINSTEIN MANIFOLDS EINSTEIN NILRADICAL NILSOLITONS GEOMETRIC INVARIANT THEORY |
topic |
EINSTEIN MANIFOLDS EINSTEIN NILRADICAL NILSOLITONS GEOMETRIC INVARIANT THEORY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The problem of classifying Einstein solvmanifolds, or equivalently, Ricci soliton nilmanifolds, is known to be equivalent to a question on the variety N n(ℂ) of n-dimensional complex nilpotent Lie algebra laws. Namely, one has to determine which GL n(ℂ)-orbits in N n(ℂ) have a critical point of the squared norm of the moment map. In this paper, we give a classification result of such distinguished orbits for n = 7. The set N 7(ℂ)/GL 7(ℂ) is formed by 148 nilpotent Lie algebras and 6 one-parameter families of pairwise non-isomorphic nilpotent Lie algebras. We have applied to each Lie algebra one of three main techniques to decide whether it has a distinguished orbit or not. Fil: Fernández Culma, Edison Alberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
The problem of classifying Einstein solvmanifolds, or equivalently, Ricci soliton nilmanifolds, is known to be equivalent to a question on the variety N n(ℂ) of n-dimensional complex nilpotent Lie algebra laws. Namely, one has to determine which GL n(ℂ)-orbits in N n(ℂ) have a critical point of the squared norm of the moment map. In this paper, we give a classification result of such distinguished orbits for n = 7. The set N 7(ℂ)/GL 7(ℂ) is formed by 148 nilpotent Lie algebras and 6 one-parameter families of pairwise non-isomorphic nilpotent Lie algebras. We have applied to each Lie algebra one of three main techniques to decide whether it has a distinguished orbit or not. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/198380 Fernández Culma, Edison Alberto; Classification of 7-dimensional einstein nilradicals; Birkhauser Boston Inc; Transformation Groups; 17; 3; 8-2012; 639-656 1083-4362 1531-586X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/198380 |
identifier_str_mv |
Fernández Culma, Edison Alberto; Classification of 7-dimensional einstein nilradicals; Birkhauser Boston Inc; Transformation Groups; 17; 3; 8-2012; 639-656 1083-4362 1531-586X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00031-012-9186-5 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00031-012-9186-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Birkhauser Boston Inc |
publisher.none.fl_str_mv |
Birkhauser Boston Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980779334828032 |
score |
12.993085 |