Statistical Simplex Method for Experimental Design in Process Optimization
- Autores
- Martínez, Ernesto Carlos
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Experimental optimization with scarce and noisy process data is a key issue in laboratory automation for faster chemical process research and development, real-time process optimization, and the ability to embed a learning capability into the design of self-calibrating instruments and extremum-seeking controllers. To deal successfully with noise and uncontrollable factors in experimental design for process optimization, a statistical characterization of an optimum using process data is proposed. The Kendall?s tau statistic is used for identifying a minimum (maximum) in a data set as a cluster center of positively (negatively) correlated points. A new simplex search algorithm with a logic that resorts to correlation-based ranking of simplex vertices for reflection, expansion, contraction, and shrinking steps is proposed. The advantage of resorting to a data set that cumulatively provides a global perspective of the output landscape through Kendall?s tau calculations is a novel feature of the statistical simplex method. Encouraging results obtained for Rastringin?s multimodal function and in the optimization of the operating policy for a semibatch reactor are presented.
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
SIMPLEX METHOD
EXPERIMENTAL OPTIMIZATION
NOISY FUNCTION OPTIMIZATION
PROCESS DEVELOPMENT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/102574
Ver los metadatos del registro completo
| id |
CONICETDig_100cc6a10dcdf3a22eadfc8a95307038 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/102574 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Statistical Simplex Method for Experimental Design in Process OptimizationMartínez, Ernesto CarlosSIMPLEX METHODEXPERIMENTAL OPTIMIZATIONNOISY FUNCTION OPTIMIZATIONPROCESS DEVELOPMENThttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Experimental optimization with scarce and noisy process data is a key issue in laboratory automation for faster chemical process research and development, real-time process optimization, and the ability to embed a learning capability into the design of self-calibrating instruments and extremum-seeking controllers. To deal successfully with noise and uncontrollable factors in experimental design for process optimization, a statistical characterization of an optimum using process data is proposed. The Kendall?s tau statistic is used for identifying a minimum (maximum) in a data set as a cluster center of positively (negatively) correlated points. A new simplex search algorithm with a logic that resorts to correlation-based ranking of simplex vertices for reflection, expansion, contraction, and shrinking steps is proposed. The advantage of resorting to a data set that cumulatively provides a global perspective of the output landscape through Kendall?s tau calculations is a novel feature of the statistical simplex method. Encouraging results obtained for Rastringin?s multimodal function and in the optimization of the operating policy for a semibatch reactor are presented.Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaAmerican Chemical Society2005-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/102574Martínez, Ernesto Carlos; Statistical Simplex Method for Experimental Design in Process Optimization; American Chemical Society; Industrial & Engineering Chemical Research; 44; 23; 11-2005; 8796-88050888-5885CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/ie050165minfo:eu-repo/semantics/altIdentifier/doi/10.1021/ie050165minfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:13:54Zoai:ri.conicet.gov.ar:11336/102574instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:13:54.298CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Statistical Simplex Method for Experimental Design in Process Optimization |
| title |
Statistical Simplex Method for Experimental Design in Process Optimization |
| spellingShingle |
Statistical Simplex Method for Experimental Design in Process Optimization Martínez, Ernesto Carlos SIMPLEX METHOD EXPERIMENTAL OPTIMIZATION NOISY FUNCTION OPTIMIZATION PROCESS DEVELOPMENT |
| title_short |
Statistical Simplex Method for Experimental Design in Process Optimization |
| title_full |
Statistical Simplex Method for Experimental Design in Process Optimization |
| title_fullStr |
Statistical Simplex Method for Experimental Design in Process Optimization |
| title_full_unstemmed |
Statistical Simplex Method for Experimental Design in Process Optimization |
| title_sort |
Statistical Simplex Method for Experimental Design in Process Optimization |
| dc.creator.none.fl_str_mv |
Martínez, Ernesto Carlos |
| author |
Martínez, Ernesto Carlos |
| author_facet |
Martínez, Ernesto Carlos |
| author_role |
author |
| dc.subject.none.fl_str_mv |
SIMPLEX METHOD EXPERIMENTAL OPTIMIZATION NOISY FUNCTION OPTIMIZATION PROCESS DEVELOPMENT |
| topic |
SIMPLEX METHOD EXPERIMENTAL OPTIMIZATION NOISY FUNCTION OPTIMIZATION PROCESS DEVELOPMENT |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Experimental optimization with scarce and noisy process data is a key issue in laboratory automation for faster chemical process research and development, real-time process optimization, and the ability to embed a learning capability into the design of self-calibrating instruments and extremum-seeking controllers. To deal successfully with noise and uncontrollable factors in experimental design for process optimization, a statistical characterization of an optimum using process data is proposed. The Kendall?s tau statistic is used for identifying a minimum (maximum) in a data set as a cluster center of positively (negatively) correlated points. A new simplex search algorithm with a logic that resorts to correlation-based ranking of simplex vertices for reflection, expansion, contraction, and shrinking steps is proposed. The advantage of resorting to a data set that cumulatively provides a global perspective of the output landscape through Kendall?s tau calculations is a novel feature of the statistical simplex method. Encouraging results obtained for Rastringin?s multimodal function and in the optimization of the operating policy for a semibatch reactor are presented. Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
| description |
Experimental optimization with scarce and noisy process data is a key issue in laboratory automation for faster chemical process research and development, real-time process optimization, and the ability to embed a learning capability into the design of self-calibrating instruments and extremum-seeking controllers. To deal successfully with noise and uncontrollable factors in experimental design for process optimization, a statistical characterization of an optimum using process data is proposed. The Kendall?s tau statistic is used for identifying a minimum (maximum) in a data set as a cluster center of positively (negatively) correlated points. A new simplex search algorithm with a logic that resorts to correlation-based ranking of simplex vertices for reflection, expansion, contraction, and shrinking steps is proposed. The advantage of resorting to a data set that cumulatively provides a global perspective of the output landscape through Kendall?s tau calculations is a novel feature of the statistical simplex method. Encouraging results obtained for Rastringin?s multimodal function and in the optimization of the operating policy for a semibatch reactor are presented. |
| publishDate |
2005 |
| dc.date.none.fl_str_mv |
2005-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/102574 Martínez, Ernesto Carlos; Statistical Simplex Method for Experimental Design in Process Optimization; American Chemical Society; Industrial & Engineering Chemical Research; 44; 23; 11-2005; 8796-8805 0888-5885 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/102574 |
| identifier_str_mv |
Martínez, Ernesto Carlos; Statistical Simplex Method for Experimental Design in Process Optimization; American Chemical Society; Industrial & Engineering Chemical Research; 44; 23; 11-2005; 8796-8805 0888-5885 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/ie050165m info:eu-repo/semantics/altIdentifier/doi/10.1021/ie050165m |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Chemical Society |
| publisher.none.fl_str_mv |
American Chemical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852334961266262016 |
| score |
12.441415 |