Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints

Autores
Durand, Guillermo Andrés; Bandoni, Jose Alberto
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The generation of an optimal schedule of elective surgery cases for a hospital surgery services unit is a well-known problem in the operations research field. The complexity of the problem is greatly compounded when uncertainties in the parameters are considered and is an issue that has been addressed in few works in the literature. Uncertainties appear in surgery durations and the availability of downstream resources such as surgical intensive care units (SICU), presenting large deviations from their expected value and impacting in the performance of the scheduling process. The technique presented here addresses the uncertainties in the optimal scheduling of a given set of elective surgery cases by means of simulated-based optimization. The main advantage of this approach over previous works is that detailed systems? simulations can be constructed without losing computational performance, thus improving the robustness of the scheduling solution.
Fil: Durand, Guillermo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
Fil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
Materia
SURGERY CASES SCHEDULING
PARAMETRIC UNCERTAINTY
SIMULATION-BASED OPTIMIZATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/127016

id CONICETDig_648e526b5f7120ad4a835f91ac7e361b
oai_identifier_str oai:ri.conicet.gov.ar:11336/127016
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity ConstraintsDurand, Guillermo AndrésBandoni, Jose AlbertoSURGERY CASES SCHEDULINGPARAMETRIC UNCERTAINTYSIMULATION-BASED OPTIMIZATIONhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The generation of an optimal schedule of elective surgery cases for a hospital surgery services unit is a well-known problem in the operations research field. The complexity of the problem is greatly compounded when uncertainties in the parameters are considered and is an issue that has been addressed in few works in the literature. Uncertainties appear in surgery durations and the availability of downstream resources such as surgical intensive care units (SICU), presenting large deviations from their expected value and impacting in the performance of the scheduling process. The technique presented here addresses the uncertainties in the optimal scheduling of a given set of elective surgery cases by means of simulated-based optimization. The main advantage of this approach over previous works is that detailed systems? simulations can be constructed without losing computational performance, thus improving the robustness of the scheduling solution.Fil: Durand, Guillermo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; ArgentinaFil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; ArgentinaUniversidad Nacional del Sur2020-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/127016Durand, Guillermo Andrés; Bandoni, Jose Alberto; Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints; Universidad Nacional del Sur; Latin American Applied Research; 50; 2; 2-2020; 127-1320327-07931851-8796CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://laar.plapiqui.edu.ar/OJS/index.php/laar/article/view/472info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:11Zoai:ri.conicet.gov.ar:11336/127016instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:11.584CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints
title Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints
spellingShingle Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints
Durand, Guillermo Andrés
SURGERY CASES SCHEDULING
PARAMETRIC UNCERTAINTY
SIMULATION-BASED OPTIMIZATION
title_short Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints
title_full Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints
title_fullStr Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints
title_full_unstemmed Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints
title_sort Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints
dc.creator.none.fl_str_mv Durand, Guillermo Andrés
Bandoni, Jose Alberto
author Durand, Guillermo Andrés
author_facet Durand, Guillermo Andrés
Bandoni, Jose Alberto
author_role author
author2 Bandoni, Jose Alberto
author2_role author
dc.subject.none.fl_str_mv SURGERY CASES SCHEDULING
PARAMETRIC UNCERTAINTY
SIMULATION-BASED OPTIMIZATION
topic SURGERY CASES SCHEDULING
PARAMETRIC UNCERTAINTY
SIMULATION-BASED OPTIMIZATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The generation of an optimal schedule of elective surgery cases for a hospital surgery services unit is a well-known problem in the operations research field. The complexity of the problem is greatly compounded when uncertainties in the parameters are considered and is an issue that has been addressed in few works in the literature. Uncertainties appear in surgery durations and the availability of downstream resources such as surgical intensive care units (SICU), presenting large deviations from their expected value and impacting in the performance of the scheduling process. The technique presented here addresses the uncertainties in the optimal scheduling of a given set of elective surgery cases by means of simulated-based optimization. The main advantage of this approach over previous works is that detailed systems? simulations can be constructed without losing computational performance, thus improving the robustness of the scheduling solution.
Fil: Durand, Guillermo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
Fil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
description The generation of an optimal schedule of elective surgery cases for a hospital surgery services unit is a well-known problem in the operations research field. The complexity of the problem is greatly compounded when uncertainties in the parameters are considered and is an issue that has been addressed in few works in the literature. Uncertainties appear in surgery durations and the availability of downstream resources such as surgical intensive care units (SICU), presenting large deviations from their expected value and impacting in the performance of the scheduling process. The technique presented here addresses the uncertainties in the optimal scheduling of a given set of elective surgery cases by means of simulated-based optimization. The main advantage of this approach over previous works is that detailed systems? simulations can be constructed without losing computational performance, thus improving the robustness of the scheduling solution.
publishDate 2020
dc.date.none.fl_str_mv 2020-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/127016
Durand, Guillermo Andrés; Bandoni, Jose Alberto; Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints; Universidad Nacional del Sur; Latin American Applied Research; 50; 2; 2-2020; 127-132
0327-0793
1851-8796
CONICET Digital
CONICET
url http://hdl.handle.net/11336/127016
identifier_str_mv Durand, Guillermo Andrés; Bandoni, Jose Alberto; Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints; Universidad Nacional del Sur; Latin American Applied Research; 50; 2; 2-2020; 127-132
0327-0793
1851-8796
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://laar.plapiqui.edu.ar/OJS/index.php/laar/article/view/472
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/zip
application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional del Sur
publisher.none.fl_str_mv Universidad Nacional del Sur
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269079453302784
score 13.13397