Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints
- Autores
- Durand, Guillermo Andrés; Bandoni, Jose Alberto
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The generation of an optimal schedule of elective surgery cases for a hospital surgery services unit is a well-known problem in the operations research field. The complexity of the problem is greatly compounded when uncertainties in the parameters are considered and is an issue that has been addressed in few works in the literature. Uncertainties appear in surgery durations and the availability of downstream resources such as surgical intensive care units (SICU), presenting large deviations from their expected value and impacting in the performance of the scheduling process. The technique presented here addresses the uncertainties in the optimal scheduling of a given set of elective surgery cases by means of simulated-based optimization. The main advantage of this approach over previous works is that detailed systems? simulations can be constructed without losing computational performance, thus improving the robustness of the scheduling solution.
Fil: Durand, Guillermo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
Fil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina - Materia
-
SURGERY CASES SCHEDULING
PARAMETRIC UNCERTAINTY
SIMULATION-BASED OPTIMIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/127016
Ver los metadatos del registro completo
id |
CONICETDig_648e526b5f7120ad4a835f91ac7e361b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/127016 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity ConstraintsDurand, Guillermo AndrésBandoni, Jose AlbertoSURGERY CASES SCHEDULINGPARAMETRIC UNCERTAINTYSIMULATION-BASED OPTIMIZATIONhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The generation of an optimal schedule of elective surgery cases for a hospital surgery services unit is a well-known problem in the operations research field. The complexity of the problem is greatly compounded when uncertainties in the parameters are considered and is an issue that has been addressed in few works in the literature. Uncertainties appear in surgery durations and the availability of downstream resources such as surgical intensive care units (SICU), presenting large deviations from their expected value and impacting in the performance of the scheduling process. The technique presented here addresses the uncertainties in the optimal scheduling of a given set of elective surgery cases by means of simulated-based optimization. The main advantage of this approach over previous works is that detailed systems? simulations can be constructed without losing computational performance, thus improving the robustness of the scheduling solution.Fil: Durand, Guillermo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; ArgentinaFil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; ArgentinaUniversidad Nacional del Sur2020-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/127016Durand, Guillermo Andrés; Bandoni, Jose Alberto; Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints; Universidad Nacional del Sur; Latin American Applied Research; 50; 2; 2-2020; 127-1320327-07931851-8796CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://laar.plapiqui.edu.ar/OJS/index.php/laar/article/view/472info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:11Zoai:ri.conicet.gov.ar:11336/127016instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:11.584CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints |
title |
Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints |
spellingShingle |
Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints Durand, Guillermo Andrés SURGERY CASES SCHEDULING PARAMETRIC UNCERTAINTY SIMULATION-BASED OPTIMIZATION |
title_short |
Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints |
title_full |
Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints |
title_fullStr |
Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints |
title_full_unstemmed |
Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints |
title_sort |
Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints |
dc.creator.none.fl_str_mv |
Durand, Guillermo Andrés Bandoni, Jose Alberto |
author |
Durand, Guillermo Andrés |
author_facet |
Durand, Guillermo Andrés Bandoni, Jose Alberto |
author_role |
author |
author2 |
Bandoni, Jose Alberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
SURGERY CASES SCHEDULING PARAMETRIC UNCERTAINTY SIMULATION-BASED OPTIMIZATION |
topic |
SURGERY CASES SCHEDULING PARAMETRIC UNCERTAINTY SIMULATION-BASED OPTIMIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The generation of an optimal schedule of elective surgery cases for a hospital surgery services unit is a well-known problem in the operations research field. The complexity of the problem is greatly compounded when uncertainties in the parameters are considered and is an issue that has been addressed in few works in the literature. Uncertainties appear in surgery durations and the availability of downstream resources such as surgical intensive care units (SICU), presenting large deviations from their expected value and impacting in the performance of the scheduling process. The technique presented here addresses the uncertainties in the optimal scheduling of a given set of elective surgery cases by means of simulated-based optimization. The main advantage of this approach over previous works is that detailed systems? simulations can be constructed without losing computational performance, thus improving the robustness of the scheduling solution. Fil: Durand, Guillermo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina Fil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina |
description |
The generation of an optimal schedule of elective surgery cases for a hospital surgery services unit is a well-known problem in the operations research field. The complexity of the problem is greatly compounded when uncertainties in the parameters are considered and is an issue that has been addressed in few works in the literature. Uncertainties appear in surgery durations and the availability of downstream resources such as surgical intensive care units (SICU), presenting large deviations from their expected value and impacting in the performance of the scheduling process. The technique presented here addresses the uncertainties in the optimal scheduling of a given set of elective surgery cases by means of simulated-based optimization. The main advantage of this approach over previous works is that detailed systems? simulations can be constructed without losing computational performance, thus improving the robustness of the scheduling solution. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/127016 Durand, Guillermo Andrés; Bandoni, Jose Alberto; Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints; Universidad Nacional del Sur; Latin American Applied Research; 50; 2; 2-2020; 127-132 0327-0793 1851-8796 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/127016 |
identifier_str_mv |
Durand, Guillermo Andrés; Bandoni, Jose Alberto; Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints; Universidad Nacional del Sur; Latin American Applied Research; 50; 2; 2-2020; 127-132 0327-0793 1851-8796 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://laar.plapiqui.edu.ar/OJS/index.php/laar/article/view/472 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional del Sur |
publisher.none.fl_str_mv |
Universidad Nacional del Sur |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269079453302784 |
score |
13.13397 |