On distinguished orbits of reductive representations
- Autores
- Fernández Culma, Edison Alberto
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let G be a real reductive Lie group and let τ : G −→ GL(V ) be a real reductive representation of G with (restricted) moment map mg : V {0} −→ g. In this work, we introduce the notion of nice space of a real reductive representation to study the problem of how to determine if a G-orbit is distinguished (i.e. it contains a critical point of the norm squared of mg). We give an elementary proof of the well-known convexity theorem of Atiyah–Guillemin– Sternberg in our particular case and we use it to give an easyto-check sufficient condition for a G-orbit of an element in a nice space to be distinguished. In the case where G is algebraic and τ is a rational representation, the above condition is also necessary (making heavy use of recent results of Michael Jablonski), obtaining a generalization of Nikolayevsky’s nice basis criterion. We also provide useful characterizations of nice spaces in terms of the weights of τ . Finally, some applications to ternary forms are presented.
Fil: Fernández Culma, Edison Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba; Argentina - Materia
-
REAL REDUCTIVE REPRESENTATIONS
REAL REDUCTIVE LIE GROUPS
DISTINGUISHED ORBITS
THE CONVEXITY OF THE MOMENT MAP - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/8989
Ver los metadatos del registro completo
id |
CONICETDig_0fdd24807eecd3216b339b721b36b406 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/8989 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On distinguished orbits of reductive representationsFernández Culma, Edison AlbertoREAL REDUCTIVE REPRESENTATIONSREAL REDUCTIVE LIE GROUPSDISTINGUISHED ORBITSTHE CONVEXITY OF THE MOMENT MAPhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let G be a real reductive Lie group and let τ : G −→ GL(V ) be a real reductive representation of G with (restricted) moment map mg : V {0} −→ g. In this work, we introduce the notion of nice space of a real reductive representation to study the problem of how to determine if a G-orbit is distinguished (i.e. it contains a critical point of the norm squared of mg). We give an elementary proof of the well-known convexity theorem of Atiyah–Guillemin– Sternberg in our particular case and we use it to give an easyto-check sufficient condition for a G-orbit of an element in a nice space to be distinguished. In the case where G is algebraic and τ is a rational representation, the above condition is also necessary (making heavy use of recent results of Michael Jablonski), obtaining a generalization of Nikolayevsky’s nice basis criterion. We also provide useful characterizations of nice spaces in terms of the weights of τ . Finally, some applications to ternary forms are presented.Fil: Fernández Culma, Edison Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba; ArgentinaElsevier2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8989Fernández Culma, Edison Alberto; On distinguished orbits of reductive representations; Elsevier; Journal Of Algebra; 396; 12-2013; 61-810021-8693enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0021869313004584info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2013.07.031info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1301.4949v1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:12:07Zoai:ri.conicet.gov.ar:11336/8989instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:12:07.938CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On distinguished orbits of reductive representations |
title |
On distinguished orbits of reductive representations |
spellingShingle |
On distinguished orbits of reductive representations Fernández Culma, Edison Alberto REAL REDUCTIVE REPRESENTATIONS REAL REDUCTIVE LIE GROUPS DISTINGUISHED ORBITS THE CONVEXITY OF THE MOMENT MAP |
title_short |
On distinguished orbits of reductive representations |
title_full |
On distinguished orbits of reductive representations |
title_fullStr |
On distinguished orbits of reductive representations |
title_full_unstemmed |
On distinguished orbits of reductive representations |
title_sort |
On distinguished orbits of reductive representations |
dc.creator.none.fl_str_mv |
Fernández Culma, Edison Alberto |
author |
Fernández Culma, Edison Alberto |
author_facet |
Fernández Culma, Edison Alberto |
author_role |
author |
dc.subject.none.fl_str_mv |
REAL REDUCTIVE REPRESENTATIONS REAL REDUCTIVE LIE GROUPS DISTINGUISHED ORBITS THE CONVEXITY OF THE MOMENT MAP |
topic |
REAL REDUCTIVE REPRESENTATIONS REAL REDUCTIVE LIE GROUPS DISTINGUISHED ORBITS THE CONVEXITY OF THE MOMENT MAP |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let G be a real reductive Lie group and let τ : G −→ GL(V ) be a real reductive representation of G with (restricted) moment map mg : V {0} −→ g. In this work, we introduce the notion of nice space of a real reductive representation to study the problem of how to determine if a G-orbit is distinguished (i.e. it contains a critical point of the norm squared of mg). We give an elementary proof of the well-known convexity theorem of Atiyah–Guillemin– Sternberg in our particular case and we use it to give an easyto-check sufficient condition for a G-orbit of an element in a nice space to be distinguished. In the case where G is algebraic and τ is a rational representation, the above condition is also necessary (making heavy use of recent results of Michael Jablonski), obtaining a generalization of Nikolayevsky’s nice basis criterion. We also provide useful characterizations of nice spaces in terms of the weights of τ . Finally, some applications to ternary forms are presented. Fil: Fernández Culma, Edison Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba; Argentina |
description |
Let G be a real reductive Lie group and let τ : G −→ GL(V ) be a real reductive representation of G with (restricted) moment map mg : V {0} −→ g. In this work, we introduce the notion of nice space of a real reductive representation to study the problem of how to determine if a G-orbit is distinguished (i.e. it contains a critical point of the norm squared of mg). We give an elementary proof of the well-known convexity theorem of Atiyah–Guillemin– Sternberg in our particular case and we use it to give an easyto-check sufficient condition for a G-orbit of an element in a nice space to be distinguished. In the case where G is algebraic and τ is a rational representation, the above condition is also necessary (making heavy use of recent results of Michael Jablonski), obtaining a generalization of Nikolayevsky’s nice basis criterion. We also provide useful characterizations of nice spaces in terms of the weights of τ . Finally, some applications to ternary forms are presented. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/8989 Fernández Culma, Edison Alberto; On distinguished orbits of reductive representations; Elsevier; Journal Of Algebra; 396; 12-2013; 61-81 0021-8693 |
url |
http://hdl.handle.net/11336/8989 |
identifier_str_mv |
Fernández Culma, Edison Alberto; On distinguished orbits of reductive representations; Elsevier; Journal Of Algebra; 396; 12-2013; 61-81 0021-8693 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0021869313004584 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2013.07.031 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1301.4949v1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083269339119616 |
score |
13.22299 |