On distinguished orbits of reductive representations

Autores
Fernández Culma, Edison Alberto
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let G be a real reductive Lie group and let τ : G −→ GL(V ) be a real reductive representation of G with (restricted) moment map mg : V {0} −→ g. In this work, we introduce the notion of nice space of a real reductive representation to study the problem of how to determine if a G-orbit is distinguished (i.e. it contains a critical point of the norm squared of mg). We give an elementary proof of the well-known convexity theorem of Atiyah–Guillemin– Sternberg in our particular case and we use it to give an easyto-check sufficient condition for a G-orbit of an element in a nice space to be distinguished. In the case where G is algebraic and τ is a rational representation, the above condition is also necessary (making heavy use of recent results of Michael Jablonski), obtaining a generalization of Nikolayevsky’s nice basis criterion. We also provide useful characterizations of nice spaces in terms of the weights of τ . Finally, some applications to ternary forms are presented.
Fil: Fernández Culma, Edison Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba; Argentina
Materia
REAL REDUCTIVE REPRESENTATIONS
REAL REDUCTIVE LIE GROUPS
DISTINGUISHED ORBITS
THE CONVEXITY OF THE MOMENT MAP
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/8989

id CONICETDig_0fdd24807eecd3216b339b721b36b406
oai_identifier_str oai:ri.conicet.gov.ar:11336/8989
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On distinguished orbits of reductive representationsFernández Culma, Edison AlbertoREAL REDUCTIVE REPRESENTATIONSREAL REDUCTIVE LIE GROUPSDISTINGUISHED ORBITSTHE CONVEXITY OF THE MOMENT MAPhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let G be a real reductive Lie group and let τ : G −→ GL(V ) be a real reductive representation of G with (restricted) moment map mg : V {0} −→ g. In this work, we introduce the notion of nice space of a real reductive representation to study the problem of how to determine if a G-orbit is distinguished (i.e. it contains a critical point of the norm squared of mg). We give an elementary proof of the well-known convexity theorem of Atiyah–Guillemin– Sternberg in our particular case and we use it to give an easyto-check sufficient condition for a G-orbit of an element in a nice space to be distinguished. In the case where G is algebraic and τ is a rational representation, the above condition is also necessary (making heavy use of recent results of Michael Jablonski), obtaining a generalization of Nikolayevsky’s nice basis criterion. We also provide useful characterizations of nice spaces in terms of the weights of τ . Finally, some applications to ternary forms are presented.Fil: Fernández Culma, Edison Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba; ArgentinaElsevier2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8989Fernández Culma, Edison Alberto; On distinguished orbits of reductive representations; Elsevier; Journal Of Algebra; 396; 12-2013; 61-810021-8693enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0021869313004584info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2013.07.031info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1301.4949v1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:12:07Zoai:ri.conicet.gov.ar:11336/8989instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:12:07.938CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On distinguished orbits of reductive representations
title On distinguished orbits of reductive representations
spellingShingle On distinguished orbits of reductive representations
Fernández Culma, Edison Alberto
REAL REDUCTIVE REPRESENTATIONS
REAL REDUCTIVE LIE GROUPS
DISTINGUISHED ORBITS
THE CONVEXITY OF THE MOMENT MAP
title_short On distinguished orbits of reductive representations
title_full On distinguished orbits of reductive representations
title_fullStr On distinguished orbits of reductive representations
title_full_unstemmed On distinguished orbits of reductive representations
title_sort On distinguished orbits of reductive representations
dc.creator.none.fl_str_mv Fernández Culma, Edison Alberto
author Fernández Culma, Edison Alberto
author_facet Fernández Culma, Edison Alberto
author_role author
dc.subject.none.fl_str_mv REAL REDUCTIVE REPRESENTATIONS
REAL REDUCTIVE LIE GROUPS
DISTINGUISHED ORBITS
THE CONVEXITY OF THE MOMENT MAP
topic REAL REDUCTIVE REPRESENTATIONS
REAL REDUCTIVE LIE GROUPS
DISTINGUISHED ORBITS
THE CONVEXITY OF THE MOMENT MAP
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let G be a real reductive Lie group and let τ : G −→ GL(V ) be a real reductive representation of G with (restricted) moment map mg : V {0} −→ g. In this work, we introduce the notion of nice space of a real reductive representation to study the problem of how to determine if a G-orbit is distinguished (i.e. it contains a critical point of the norm squared of mg). We give an elementary proof of the well-known convexity theorem of Atiyah–Guillemin– Sternberg in our particular case and we use it to give an easyto-check sufficient condition for a G-orbit of an element in a nice space to be distinguished. In the case where G is algebraic and τ is a rational representation, the above condition is also necessary (making heavy use of recent results of Michael Jablonski), obtaining a generalization of Nikolayevsky’s nice basis criterion. We also provide useful characterizations of nice spaces in terms of the weights of τ . Finally, some applications to ternary forms are presented.
Fil: Fernández Culma, Edison Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba; Argentina
description Let G be a real reductive Lie group and let τ : G −→ GL(V ) be a real reductive representation of G with (restricted) moment map mg : V {0} −→ g. In this work, we introduce the notion of nice space of a real reductive representation to study the problem of how to determine if a G-orbit is distinguished (i.e. it contains a critical point of the norm squared of mg). We give an elementary proof of the well-known convexity theorem of Atiyah–Guillemin– Sternberg in our particular case and we use it to give an easyto-check sufficient condition for a G-orbit of an element in a nice space to be distinguished. In the case where G is algebraic and τ is a rational representation, the above condition is also necessary (making heavy use of recent results of Michael Jablonski), obtaining a generalization of Nikolayevsky’s nice basis criterion. We also provide useful characterizations of nice spaces in terms of the weights of τ . Finally, some applications to ternary forms are presented.
publishDate 2013
dc.date.none.fl_str_mv 2013-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/8989
Fernández Culma, Edison Alberto; On distinguished orbits of reductive representations; Elsevier; Journal Of Algebra; 396; 12-2013; 61-81
0021-8693
url http://hdl.handle.net/11336/8989
identifier_str_mv Fernández Culma, Edison Alberto; On distinguished orbits of reductive representations; Elsevier; Journal Of Algebra; 396; 12-2013; 61-81
0021-8693
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0021869313004584
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2013.07.031
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1301.4949v1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083269339119616
score 13.22299