Torsors, reductive group schemes and extended affine Lie algebras
- Autores
- Gille, Philippe; Pianzola, Arturo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We give a detailed description of the torsors that correspond to multiloop algebras. These algebras are twisted forms of simple Lie algebras extended over Laurent polynomial rings. They play a crucial role in the construction of Extended Affine Lie Algebras (which are higher nullity analogues of the affine Kac-Moody Lie algebras). The torsor approach that we take draws heavily for the theory of reductive group schemes developed by M. Demazure and A. Grothendieck. It also allows us to find a bridge between multiloop algebras and the work of F. Bruhat and J. Tits on reductive groups over complete local fields.
Fil: Gille, Philippe. Centre National de la Recherche Scientifique. Ecole Normale Supérieure; Francia
Fil: Pianzola, Arturo. University of Alberta; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Reductive Group Schemes
Loop Torsors
Extended Affine Lie Algebras - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/25470
Ver los metadatos del registro completo
id |
CONICETDig_f0157c3400f528cc9bbc93b69a62313b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/25470 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Torsors, reductive group schemes and extended affine Lie algebrasGille, PhilippePianzola, ArturoReductive Group SchemesLoop TorsorsExtended Affine Lie Algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We give a detailed description of the torsors that correspond to multiloop algebras. These algebras are twisted forms of simple Lie algebras extended over Laurent polynomial rings. They play a crucial role in the construction of Extended Affine Lie Algebras (which are higher nullity analogues of the affine Kac-Moody Lie algebras). The torsor approach that we take draws heavily for the theory of reductive group schemes developed by M. Demazure and A. Grothendieck. It also allows us to find a bridge between multiloop algebras and the work of F. Bruhat and J. Tits on reductive groups over complete local fields.Fil: Gille, Philippe. Centre National de la Recherche Scientifique. Ecole Normale Supérieure; FranciaFil: Pianzola, Arturo. University of Alberta; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Mathematical Society2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25470Gille, Philippe; Pianzola, Arturo; Torsors, reductive group schemes and extended affine Lie algebras; American Mathematical Society; Memoirs Of The American Mathematical Society (ams); 226; 1063; 11-2013; 1-1160065-92661947–6221CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1109.3405info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/books/memo/1063/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:38Zoai:ri.conicet.gov.ar:11336/25470instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:38.594CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Torsors, reductive group schemes and extended affine Lie algebras |
title |
Torsors, reductive group schemes and extended affine Lie algebras |
spellingShingle |
Torsors, reductive group schemes and extended affine Lie algebras Gille, Philippe Reductive Group Schemes Loop Torsors Extended Affine Lie Algebras |
title_short |
Torsors, reductive group schemes and extended affine Lie algebras |
title_full |
Torsors, reductive group schemes and extended affine Lie algebras |
title_fullStr |
Torsors, reductive group schemes and extended affine Lie algebras |
title_full_unstemmed |
Torsors, reductive group schemes and extended affine Lie algebras |
title_sort |
Torsors, reductive group schemes and extended affine Lie algebras |
dc.creator.none.fl_str_mv |
Gille, Philippe Pianzola, Arturo |
author |
Gille, Philippe |
author_facet |
Gille, Philippe Pianzola, Arturo |
author_role |
author |
author2 |
Pianzola, Arturo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Reductive Group Schemes Loop Torsors Extended Affine Lie Algebras |
topic |
Reductive Group Schemes Loop Torsors Extended Affine Lie Algebras |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We give a detailed description of the torsors that correspond to multiloop algebras. These algebras are twisted forms of simple Lie algebras extended over Laurent polynomial rings. They play a crucial role in the construction of Extended Affine Lie Algebras (which are higher nullity analogues of the affine Kac-Moody Lie algebras). The torsor approach that we take draws heavily for the theory of reductive group schemes developed by M. Demazure and A. Grothendieck. It also allows us to find a bridge between multiloop algebras and the work of F. Bruhat and J. Tits on reductive groups over complete local fields. Fil: Gille, Philippe. Centre National de la Recherche Scientifique. Ecole Normale Supérieure; Francia Fil: Pianzola, Arturo. University of Alberta; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We give a detailed description of the torsors that correspond to multiloop algebras. These algebras are twisted forms of simple Lie algebras extended over Laurent polynomial rings. They play a crucial role in the construction of Extended Affine Lie Algebras (which are higher nullity analogues of the affine Kac-Moody Lie algebras). The torsor approach that we take draws heavily for the theory of reductive group schemes developed by M. Demazure and A. Grothendieck. It also allows us to find a bridge between multiloop algebras and the work of F. Bruhat and J. Tits on reductive groups over complete local fields. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/25470 Gille, Philippe; Pianzola, Arturo; Torsors, reductive group schemes and extended affine Lie algebras; American Mathematical Society; Memoirs Of The American Mathematical Society (ams); 226; 1063; 11-2013; 1-116 0065-9266 1947–6221 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/25470 |
identifier_str_mv |
Gille, Philippe; Pianzola, Arturo; Torsors, reductive group schemes and extended affine Lie algebras; American Mathematical Society; Memoirs Of The American Mathematical Society (ams); 226; 1063; 11-2013; 1-116 0065-9266 1947–6221 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1109.3405 info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/books/memo/1063/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268872662581248 |
score |
13.13397 |