A note on the uniqueness of the canonical connection of a naturally reductive space
- Autores
- Olmos, Carlos Enrique; Reggiani, Silvio Nicolás
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We extend the result in J. Reine Angew. Math. 664, 29-53, to the non-compact case. Namely, we prove that the canonical connection on a simply connected and irreducible naturally reductive space is unique, provided the space is not a sphere, a compact Lie group with a bi-invariant metric or its symmetric dual. In particular, the canonical connection is unique for the hyperbolic space when the dimension is different from three. We also prove that the canonical connection on the sphere is unique for the symmetric presentation. Finally, we compute the full isometry group (connected component) of a compact and locally irreducible naturally reductive space.
Fil: Olmos, Carlos Enrique. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina
Fil: Reggiani, Silvio Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina - Materia
-
Canonical Connection
Reductive Space - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/10985
Ver los metadatos del registro completo
id |
CONICETDig_bb4514c975882a009fdb746546bb3a37 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/10985 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A note on the uniqueness of the canonical connection of a naturally reductive spaceOlmos, Carlos EnriqueReggiani, Silvio NicolásCanonical ConnectionReductive Spacehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We extend the result in J. Reine Angew. Math. 664, 29-53, to the non-compact case. Namely, we prove that the canonical connection on a simply connected and irreducible naturally reductive space is unique, provided the space is not a sphere, a compact Lie group with a bi-invariant metric or its symmetric dual. In particular, the canonical connection is unique for the hyperbolic space when the dimension is different from three. We also prove that the canonical connection on the sphere is unique for the symmetric presentation. Finally, we compute the full isometry group (connected component) of a compact and locally irreducible naturally reductive space.Fil: Olmos, Carlos Enrique. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); ArgentinaFil: Reggiani, Silvio Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); ArgentinaSpringer Wien2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/10985Olmos, Carlos Enrique; Reggiani, Silvio Nicolás; A note on the uniqueness of the canonical connection of a naturally reductive space; Springer Wien; Monatshefete Fur Mathematik; 172; 3-4; 12-2013; 379-3860026-9255enginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00605-013-0554-6info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00605-013-0554-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:28:27Zoai:ri.conicet.gov.ar:11336/10985instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:28:28.181CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A note on the uniqueness of the canonical connection of a naturally reductive space |
title |
A note on the uniqueness of the canonical connection of a naturally reductive space |
spellingShingle |
A note on the uniqueness of the canonical connection of a naturally reductive space Olmos, Carlos Enrique Canonical Connection Reductive Space |
title_short |
A note on the uniqueness of the canonical connection of a naturally reductive space |
title_full |
A note on the uniqueness of the canonical connection of a naturally reductive space |
title_fullStr |
A note on the uniqueness of the canonical connection of a naturally reductive space |
title_full_unstemmed |
A note on the uniqueness of the canonical connection of a naturally reductive space |
title_sort |
A note on the uniqueness of the canonical connection of a naturally reductive space |
dc.creator.none.fl_str_mv |
Olmos, Carlos Enrique Reggiani, Silvio Nicolás |
author |
Olmos, Carlos Enrique |
author_facet |
Olmos, Carlos Enrique Reggiani, Silvio Nicolás |
author_role |
author |
author2 |
Reggiani, Silvio Nicolás |
author2_role |
author |
dc.subject.none.fl_str_mv |
Canonical Connection Reductive Space |
topic |
Canonical Connection Reductive Space |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We extend the result in J. Reine Angew. Math. 664, 29-53, to the non-compact case. Namely, we prove that the canonical connection on a simply connected and irreducible naturally reductive space is unique, provided the space is not a sphere, a compact Lie group with a bi-invariant metric or its symmetric dual. In particular, the canonical connection is unique for the hyperbolic space when the dimension is different from three. We also prove that the canonical connection on the sphere is unique for the symmetric presentation. Finally, we compute the full isometry group (connected component) of a compact and locally irreducible naturally reductive space. Fil: Olmos, Carlos Enrique. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina Fil: Reggiani, Silvio Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina |
description |
We extend the result in J. Reine Angew. Math. 664, 29-53, to the non-compact case. Namely, we prove that the canonical connection on a simply connected and irreducible naturally reductive space is unique, provided the space is not a sphere, a compact Lie group with a bi-invariant metric or its symmetric dual. In particular, the canonical connection is unique for the hyperbolic space when the dimension is different from three. We also prove that the canonical connection on the sphere is unique for the symmetric presentation. Finally, we compute the full isometry group (connected component) of a compact and locally irreducible naturally reductive space. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/10985 Olmos, Carlos Enrique; Reggiani, Silvio Nicolás; A note on the uniqueness of the canonical connection of a naturally reductive space; Springer Wien; Monatshefete Fur Mathematik; 172; 3-4; 12-2013; 379-386 0026-9255 |
url |
http://hdl.handle.net/11336/10985 |
identifier_str_mv |
Olmos, Carlos Enrique; Reggiani, Silvio Nicolás; A note on the uniqueness of the canonical connection of a naturally reductive space; Springer Wien; Monatshefete Fur Mathematik; 172; 3-4; 12-2013; 379-386 0026-9255 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00605-013-0554-6 info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00605-013-0554-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Wien |
publisher.none.fl_str_mv |
Springer Wien |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083425039024128 |
score |
13.22299 |