Hofer's metric in compact Lie groups
- Autores
- Larotonda, Gabriel Andrés; Miglioli, Martín Carlos
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article we study the Hofer geometry of a compact Lie group K which acts by Hamiltonian diffeomorphisms on a symplectic manifold M. Generalized Hofer norms on the Lie algebra of K are introduced and analyzed with tools from group invariant convex geometry, functional and matrix analysis. Several global results on the existence of geodesics and their characterization in finite dimensional Lie groups K endowed with bi-invariant Finsler metrics are proved. We relate the conditions for being a geodesic in the group K and in the group of Hamiltonian diffeomorphisms. These results are applied to obtain necessary and sufficient conditions on the moment polytope of the momentum map, for the commutativity of the Hamiltonians of geodesics. Particular cases are studied, where a generalized non-crossing of eigenvalues property of the Hamiltonians hold.
Fil: Larotonda, Gabriel Andrés. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Miglioli, Martín Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
HOFER’S METRIC
COMPACT LIE GROUP
HAMILTONIAN ACTION
MOMENT POLYTOPE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/212087
Ver los metadatos del registro completo
| id |
CONICETDig_0f1c932da946ffad68779558309a635f |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/212087 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Hofer's metric in compact Lie groupsLarotonda, Gabriel AndrésMiglioli, Martín CarlosHOFER’S METRICCOMPACT LIE GROUPHAMILTONIAN ACTIONMOMENT POLYTOPEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we study the Hofer geometry of a compact Lie group K which acts by Hamiltonian diffeomorphisms on a symplectic manifold M. Generalized Hofer norms on the Lie algebra of K are introduced and analyzed with tools from group invariant convex geometry, functional and matrix analysis. Several global results on the existence of geodesics and their characterization in finite dimensional Lie groups K endowed with bi-invariant Finsler metrics are proved. We relate the conditions for being a geodesic in the group K and in the group of Hamiltonian diffeomorphisms. These results are applied to obtain necessary and sufficient conditions on the moment polytope of the momentum map, for the commutativity of the Hamiltonians of geodesics. Particular cases are studied, where a generalized non-crossing of eigenvalues property of the Hamiltonians hold.Fil: Larotonda, Gabriel Andrés. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Miglioli, Martín Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaEuropean Mathematical Society2023-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/212087Larotonda, Gabriel Andrés; Miglioli, Martín Carlos; Hofer's metric in compact Lie groups; European Mathematical Society; Groups Geometry And Dynamics; 17; 3; 5-2023; 839–8981661-7207CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ems.press/doi/10.4171/GGD/721info:eu-repo/semantics/altIdentifier/doi/10.4171/GGD/721info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1907.09843info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:20:48Zoai:ri.conicet.gov.ar:11336/212087instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:20:48.776CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Hofer's metric in compact Lie groups |
| title |
Hofer's metric in compact Lie groups |
| spellingShingle |
Hofer's metric in compact Lie groups Larotonda, Gabriel Andrés HOFER’S METRIC COMPACT LIE GROUP HAMILTONIAN ACTION MOMENT POLYTOPE |
| title_short |
Hofer's metric in compact Lie groups |
| title_full |
Hofer's metric in compact Lie groups |
| title_fullStr |
Hofer's metric in compact Lie groups |
| title_full_unstemmed |
Hofer's metric in compact Lie groups |
| title_sort |
Hofer's metric in compact Lie groups |
| dc.creator.none.fl_str_mv |
Larotonda, Gabriel Andrés Miglioli, Martín Carlos |
| author |
Larotonda, Gabriel Andrés |
| author_facet |
Larotonda, Gabriel Andrés Miglioli, Martín Carlos |
| author_role |
author |
| author2 |
Miglioli, Martín Carlos |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
HOFER’S METRIC COMPACT LIE GROUP HAMILTONIAN ACTION MOMENT POLYTOPE |
| topic |
HOFER’S METRIC COMPACT LIE GROUP HAMILTONIAN ACTION MOMENT POLYTOPE |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this article we study the Hofer geometry of a compact Lie group K which acts by Hamiltonian diffeomorphisms on a symplectic manifold M. Generalized Hofer norms on the Lie algebra of K are introduced and analyzed with tools from group invariant convex geometry, functional and matrix analysis. Several global results on the existence of geodesics and their characterization in finite dimensional Lie groups K endowed with bi-invariant Finsler metrics are proved. We relate the conditions for being a geodesic in the group K and in the group of Hamiltonian diffeomorphisms. These results are applied to obtain necessary and sufficient conditions on the moment polytope of the momentum map, for the commutativity of the Hamiltonians of geodesics. Particular cases are studied, where a generalized non-crossing of eigenvalues property of the Hamiltonians hold. Fil: Larotonda, Gabriel Andrés. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Miglioli, Martín Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
| description |
In this article we study the Hofer geometry of a compact Lie group K which acts by Hamiltonian diffeomorphisms on a symplectic manifold M. Generalized Hofer norms on the Lie algebra of K are introduced and analyzed with tools from group invariant convex geometry, functional and matrix analysis. Several global results on the existence of geodesics and their characterization in finite dimensional Lie groups K endowed with bi-invariant Finsler metrics are proved. We relate the conditions for being a geodesic in the group K and in the group of Hamiltonian diffeomorphisms. These results are applied to obtain necessary and sufficient conditions on the moment polytope of the momentum map, for the commutativity of the Hamiltonians of geodesics. Particular cases are studied, where a generalized non-crossing of eigenvalues property of the Hamiltonians hold. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/212087 Larotonda, Gabriel Andrés; Miglioli, Martín Carlos; Hofer's metric in compact Lie groups; European Mathematical Society; Groups Geometry And Dynamics; 17; 3; 5-2023; 839–898 1661-7207 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/212087 |
| identifier_str_mv |
Larotonda, Gabriel Andrés; Miglioli, Martín Carlos; Hofer's metric in compact Lie groups; European Mathematical Society; Groups Geometry And Dynamics; 17; 3; 5-2023; 839–898 1661-7207 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ems.press/doi/10.4171/GGD/721 info:eu-repo/semantics/altIdentifier/doi/10.4171/GGD/721 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1907.09843 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
European Mathematical Society |
| publisher.none.fl_str_mv |
European Mathematical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781703495876608 |
| score |
12.982451 |