Irreducible continuous representations of the simple linearly compact n -Lie superalgebra of type S
- Autores
- Boyallian, Carina; Meinardi, Vanesa Beatriz
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the present paper, we classify all irreducible continuous representations of the simple linearly compact n-Lie superalgebra of type S. The classification is based on a bijective correspondence between the continuous representations of the n-Lie algebras Sn and continuous representations of the Lie algebra of Cartan type S, on which some two-sided ideal acts trivially.
Fil: Boyallian, Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Meinardi, Vanesa Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
LINEARLY COMPACT N -LIE SUPERALGEBRA
REPRESENTATION THEORY OF N -LIE ALGEBRA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/89291
Ver los metadatos del registro completo
id |
CONICETDig_9b75939125cd414a7c8e2fcea6049aea |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/89291 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Irreducible continuous representations of the simple linearly compact n -Lie superalgebra of type SBoyallian, CarinaMeinardi, Vanesa BeatrizLINEARLY COMPACT N -LIE SUPERALGEBRAREPRESENTATION THEORY OF N -LIE ALGEBRAhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In the present paper, we classify all irreducible continuous representations of the simple linearly compact n-Lie superalgebra of type S. The classification is based on a bijective correspondence between the continuous representations of the n-Lie algebras Sn and continuous representations of the Lie algebra of Cartan type S, on which some two-sided ideal acts trivially.Fil: Boyallian, Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Meinardi, Vanesa Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaWorld Scientific2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89291Boyallian, Carina; Meinardi, Vanesa Beatriz; Irreducible continuous representations of the simple linearly compact n -Lie superalgebra of type S; World Scientific; Journal of Algebra and its Applications; 18; 2; 2-20190219-49881793-6829CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219498819500361info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219498819500361info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:24:05Zoai:ri.conicet.gov.ar:11336/89291instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:24:05.305CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Irreducible continuous representations of the simple linearly compact n -Lie superalgebra of type S |
title |
Irreducible continuous representations of the simple linearly compact n -Lie superalgebra of type S |
spellingShingle |
Irreducible continuous representations of the simple linearly compact n -Lie superalgebra of type S Boyallian, Carina LINEARLY COMPACT N -LIE SUPERALGEBRA REPRESENTATION THEORY OF N -LIE ALGEBRA |
title_short |
Irreducible continuous representations of the simple linearly compact n -Lie superalgebra of type S |
title_full |
Irreducible continuous representations of the simple linearly compact n -Lie superalgebra of type S |
title_fullStr |
Irreducible continuous representations of the simple linearly compact n -Lie superalgebra of type S |
title_full_unstemmed |
Irreducible continuous representations of the simple linearly compact n -Lie superalgebra of type S |
title_sort |
Irreducible continuous representations of the simple linearly compact n -Lie superalgebra of type S |
dc.creator.none.fl_str_mv |
Boyallian, Carina Meinardi, Vanesa Beatriz |
author |
Boyallian, Carina |
author_facet |
Boyallian, Carina Meinardi, Vanesa Beatriz |
author_role |
author |
author2 |
Meinardi, Vanesa Beatriz |
author2_role |
author |
dc.subject.none.fl_str_mv |
LINEARLY COMPACT N -LIE SUPERALGEBRA REPRESENTATION THEORY OF N -LIE ALGEBRA |
topic |
LINEARLY COMPACT N -LIE SUPERALGEBRA REPRESENTATION THEORY OF N -LIE ALGEBRA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the present paper, we classify all irreducible continuous representations of the simple linearly compact n-Lie superalgebra of type S. The classification is based on a bijective correspondence between the continuous representations of the n-Lie algebras Sn and continuous representations of the Lie algebra of Cartan type S, on which some two-sided ideal acts trivially. Fil: Boyallian, Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Meinardi, Vanesa Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
In the present paper, we classify all irreducible continuous representations of the simple linearly compact n-Lie superalgebra of type S. The classification is based on a bijective correspondence between the continuous representations of the n-Lie algebras Sn and continuous representations of the Lie algebra of Cartan type S, on which some two-sided ideal acts trivially. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/89291 Boyallian, Carina; Meinardi, Vanesa Beatriz; Irreducible continuous representations of the simple linearly compact n -Lie superalgebra of type S; World Scientific; Journal of Algebra and its Applications; 18; 2; 2-2019 0219-4988 1793-6829 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/89291 |
identifier_str_mv |
Boyallian, Carina; Meinardi, Vanesa Beatriz; Irreducible continuous representations of the simple linearly compact n -Lie superalgebra of type S; World Scientific; Journal of Algebra and its Applications; 18; 2; 2-2019 0219-4988 1793-6829 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219498819500361 info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219498819500361 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082658743877632 |
score |
13.22299 |