The index of compact simple Lie groups:
- Autores
- Berndt, Jürgen; Olmos, Carlos Enrique
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let M be an irreducible Riemannian symmetric space. The index i(M) of M is the minimal codimension of a (non-trivial) totally geodesic submanifold of M. The purpose of this note is to determine the index i(M) for all irreducible Riemannian symmetric spaces M of type (II) and (IV).
Fil: Olmos, Carlos Enrique. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Berndt Jürgen. - Materia
-
ONISHCHIK INDEX OF A SYMMETRIC SPACE
INDEX OF LIE GROUPS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/93812
Ver los metadatos del registro completo
id |
CONICETDig_4c0b114e9f5959c374351a434172472d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/93812 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The index of compact simple Lie groups:Berndt, JürgenOlmos, Carlos EnriqueONISHCHIK INDEX OF A SYMMETRIC SPACEINDEX OF LIE GROUPShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let M be an irreducible Riemannian symmetric space. The index i(M) of M is the minimal codimension of a (non-trivial) totally geodesic submanifold of M. The purpose of this note is to determine the index i(M) for all irreducible Riemannian symmetric spaces M of type (II) and (IV).Fil: Olmos, Carlos Enrique. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Berndt Jürgen.Oxford University Press2017-10-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93812Berndt, Jürgen; Olmos, Carlos Enrique; The index of compact simple Lie groups:; Oxford University Press; Bulletin Of The London Mathematical Society; 49; 5; 21-10-2017; 903-9070024-60931469-2120CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1112/blms.12081info:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/full/10.1112/blms.12081info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:38:33Zoai:ri.conicet.gov.ar:11336/93812instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:38:33.459CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The index of compact simple Lie groups: |
title |
The index of compact simple Lie groups: |
spellingShingle |
The index of compact simple Lie groups: Berndt, Jürgen ONISHCHIK INDEX OF A SYMMETRIC SPACE INDEX OF LIE GROUPS |
title_short |
The index of compact simple Lie groups: |
title_full |
The index of compact simple Lie groups: |
title_fullStr |
The index of compact simple Lie groups: |
title_full_unstemmed |
The index of compact simple Lie groups: |
title_sort |
The index of compact simple Lie groups: |
dc.creator.none.fl_str_mv |
Berndt, Jürgen Olmos, Carlos Enrique |
author |
Berndt, Jürgen |
author_facet |
Berndt, Jürgen Olmos, Carlos Enrique |
author_role |
author |
author2 |
Olmos, Carlos Enrique |
author2_role |
author |
dc.subject.none.fl_str_mv |
ONISHCHIK INDEX OF A SYMMETRIC SPACE INDEX OF LIE GROUPS |
topic |
ONISHCHIK INDEX OF A SYMMETRIC SPACE INDEX OF LIE GROUPS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let M be an irreducible Riemannian symmetric space. The index i(M) of M is the minimal codimension of a (non-trivial) totally geodesic submanifold of M. The purpose of this note is to determine the index i(M) for all irreducible Riemannian symmetric spaces M of type (II) and (IV). Fil: Olmos, Carlos Enrique. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Berndt Jürgen. |
description |
Let M be an irreducible Riemannian symmetric space. The index i(M) of M is the minimal codimension of a (non-trivial) totally geodesic submanifold of M. The purpose of this note is to determine the index i(M) for all irreducible Riemannian symmetric spaces M of type (II) and (IV). |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10-21 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/93812 Berndt, Jürgen; Olmos, Carlos Enrique; The index of compact simple Lie groups:; Oxford University Press; Bulletin Of The London Mathematical Society; 49; 5; 21-10-2017; 903-907 0024-6093 1469-2120 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/93812 |
identifier_str_mv |
Berndt, Jürgen; Olmos, Carlos Enrique; The index of compact simple Lie groups:; Oxford University Press; Bulletin Of The London Mathematical Society; 49; 5; 21-10-2017; 903-907 0024-6093 1469-2120 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1112/blms.12081 info:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/full/10.1112/blms.12081 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614408744992768 |
score |
13.070432 |