Jamming and percolation of linear k -mers on honeycomb lattices

Autores
Iglesias Panuska, G. A.; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Numerical simulations and finite-size scaling analysis have been performed to study the jamming and percolation behavior of elongated objects deposited on two-dimensional honeycomb lattices. The depositing particle is modeled as a linear array of length k (so-called k -mer), maximizing the distance between first and last monomers in the chain. The separation between k -mer units is equal to the lattice constant. Hence, k sites are occupied by a k -mer when adsorbed onto the surface. The adsorption process starts with an initial configuration, where all lattice sites are empty. Then, the sites are occupied following a random sequential adsorption mechanism. The process finishes when the jamming state is reached and no more objects can be deposited due to the absence of empty site clusters of appropriate size and shape. Jamming coverage θ j , k and percolation threshold θ c , k were determined for a wide range of values of k ( 2 ≤ k ≤ 128 ). The obtained results shows that ( i ) θ j , k is a decreasing function with increasing k , being θ j , k → ∞ = 0.6007 ( 6 ) the limit value for infinitely long k -mers; and ( i i ) θ c , k has a strong dependence on k . It decreases in the range 2 ≤ k < 48 , goes through a minimum around k = 48 , and increases smoothly from k = 48 up to the largest studied value of k = 128 . Finally, the precise determination of the critical exponents ν , β , and γ indicates that the model belongs to the same universality class as 2D standard percolation regardless of the value of k considered.
Fil: Iglesias Panuska, G. A.. Universidad Nacional de San Luis; Argentina
Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Materia
JAMMING
PERCOLATION
LATTICE
HONEYCOMB
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/136537

id CONICETDig_cb73e66eb719fc90940956db87dad59a
oai_identifier_str oai:ri.conicet.gov.ar:11336/136537
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Jamming and percolation of linear k -mers on honeycomb latticesIglesias Panuska, G. A.Centres, Paulo MarceloRamirez Pastor, Antonio JoseJAMMINGPERCOLATIONLATTICEHONEYCOMBhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Numerical simulations and finite-size scaling analysis have been performed to study the jamming and percolation behavior of elongated objects deposited on two-dimensional honeycomb lattices. The depositing particle is modeled as a linear array of length k (so-called k -mer), maximizing the distance between first and last monomers in the chain. The separation between k -mer units is equal to the lattice constant. Hence, k sites are occupied by a k -mer when adsorbed onto the surface. The adsorption process starts with an initial configuration, where all lattice sites are empty. Then, the sites are occupied following a random sequential adsorption mechanism. The process finishes when the jamming state is reached and no more objects can be deposited due to the absence of empty site clusters of appropriate size and shape. Jamming coverage θ j , k and percolation threshold θ c , k were determined for a wide range of values of k ( 2 ≤ k ≤ 128 ). The obtained results shows that ( i ) θ j , k is a decreasing function with increasing k , being θ j , k → ∞ = 0.6007 ( 6 ) the limit value for infinitely long k -mers; and ( i i ) θ c , k has a strong dependence on k . It decreases in the range 2 ≤ k < 48 , goes through a minimum around k = 48 , and increases smoothly from k = 48 up to the largest studied value of k = 128 . Finally, the precise determination of the critical exponents ν , β , and γ indicates that the model belongs to the same universality class as 2D standard percolation regardless of the value of k considered.Fil: Iglesias Panuska, G. A.. Universidad Nacional de San Luis; ArgentinaFil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaAmerican Physical Society2020-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/136537Iglesias Panuska, G. A.; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Jamming and percolation of linear k -mers on honeycomb lattices; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 102; 3; 9-2020; 1-11; 0321232470-00452470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.102.032123info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.102.032123info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:52Zoai:ri.conicet.gov.ar:11336/136537instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:52.547CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Jamming and percolation of linear k -mers on honeycomb lattices
title Jamming and percolation of linear k -mers on honeycomb lattices
spellingShingle Jamming and percolation of linear k -mers on honeycomb lattices
Iglesias Panuska, G. A.
JAMMING
PERCOLATION
LATTICE
HONEYCOMB
title_short Jamming and percolation of linear k -mers on honeycomb lattices
title_full Jamming and percolation of linear k -mers on honeycomb lattices
title_fullStr Jamming and percolation of linear k -mers on honeycomb lattices
title_full_unstemmed Jamming and percolation of linear k -mers on honeycomb lattices
title_sort Jamming and percolation of linear k -mers on honeycomb lattices
dc.creator.none.fl_str_mv Iglesias Panuska, G. A.
Centres, Paulo Marcelo
Ramirez Pastor, Antonio Jose
author Iglesias Panuska, G. A.
author_facet Iglesias Panuska, G. A.
Centres, Paulo Marcelo
Ramirez Pastor, Antonio Jose
author_role author
author2 Centres, Paulo Marcelo
Ramirez Pastor, Antonio Jose
author2_role author
author
dc.subject.none.fl_str_mv JAMMING
PERCOLATION
LATTICE
HONEYCOMB
topic JAMMING
PERCOLATION
LATTICE
HONEYCOMB
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Numerical simulations and finite-size scaling analysis have been performed to study the jamming and percolation behavior of elongated objects deposited on two-dimensional honeycomb lattices. The depositing particle is modeled as a linear array of length k (so-called k -mer), maximizing the distance between first and last monomers in the chain. The separation between k -mer units is equal to the lattice constant. Hence, k sites are occupied by a k -mer when adsorbed onto the surface. The adsorption process starts with an initial configuration, where all lattice sites are empty. Then, the sites are occupied following a random sequential adsorption mechanism. The process finishes when the jamming state is reached and no more objects can be deposited due to the absence of empty site clusters of appropriate size and shape. Jamming coverage θ j , k and percolation threshold θ c , k were determined for a wide range of values of k ( 2 ≤ k ≤ 128 ). The obtained results shows that ( i ) θ j , k is a decreasing function with increasing k , being θ j , k → ∞ = 0.6007 ( 6 ) the limit value for infinitely long k -mers; and ( i i ) θ c , k has a strong dependence on k . It decreases in the range 2 ≤ k < 48 , goes through a minimum around k = 48 , and increases smoothly from k = 48 up to the largest studied value of k = 128 . Finally, the precise determination of the critical exponents ν , β , and γ indicates that the model belongs to the same universality class as 2D standard percolation regardless of the value of k considered.
Fil: Iglesias Panuska, G. A.. Universidad Nacional de San Luis; Argentina
Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
description Numerical simulations and finite-size scaling analysis have been performed to study the jamming and percolation behavior of elongated objects deposited on two-dimensional honeycomb lattices. The depositing particle is modeled as a linear array of length k (so-called k -mer), maximizing the distance between first and last monomers in the chain. The separation between k -mer units is equal to the lattice constant. Hence, k sites are occupied by a k -mer when adsorbed onto the surface. The adsorption process starts with an initial configuration, where all lattice sites are empty. Then, the sites are occupied following a random sequential adsorption mechanism. The process finishes when the jamming state is reached and no more objects can be deposited due to the absence of empty site clusters of appropriate size and shape. Jamming coverage θ j , k and percolation threshold θ c , k were determined for a wide range of values of k ( 2 ≤ k ≤ 128 ). The obtained results shows that ( i ) θ j , k is a decreasing function with increasing k , being θ j , k → ∞ = 0.6007 ( 6 ) the limit value for infinitely long k -mers; and ( i i ) θ c , k has a strong dependence on k . It decreases in the range 2 ≤ k < 48 , goes through a minimum around k = 48 , and increases smoothly from k = 48 up to the largest studied value of k = 128 . Finally, the precise determination of the critical exponents ν , β , and γ indicates that the model belongs to the same universality class as 2D standard percolation regardless of the value of k considered.
publishDate 2020
dc.date.none.fl_str_mv 2020-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/136537
Iglesias Panuska, G. A.; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Jamming and percolation of linear k -mers on honeycomb lattices; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 102; 3; 9-2020; 1-11; 032123
2470-0045
2470-0053
CONICET Digital
CONICET
url http://hdl.handle.net/11336/136537
identifier_str_mv Iglesias Panuska, G. A.; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Jamming and percolation of linear k -mers on honeycomb lattices; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 102; 3; 9-2020; 1-11; 032123
2470-0045
2470-0053
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.102.032123
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.102.032123
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270060458016768
score 13.13397