Jamming and percolation of linear k -mers on honeycomb lattices
- Autores
- Iglesias Panuska, G. A.; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Numerical simulations and finite-size scaling analysis have been performed to study the jamming and percolation behavior of elongated objects deposited on two-dimensional honeycomb lattices. The depositing particle is modeled as a linear array of length k (so-called k -mer), maximizing the distance between first and last monomers in the chain. The separation between k -mer units is equal to the lattice constant. Hence, k sites are occupied by a k -mer when adsorbed onto the surface. The adsorption process starts with an initial configuration, where all lattice sites are empty. Then, the sites are occupied following a random sequential adsorption mechanism. The process finishes when the jamming state is reached and no more objects can be deposited due to the absence of empty site clusters of appropriate size and shape. Jamming coverage θ j , k and percolation threshold θ c , k were determined for a wide range of values of k ( 2 ≤ k ≤ 128 ). The obtained results shows that ( i ) θ j , k is a decreasing function with increasing k , being θ j , k → ∞ = 0.6007 ( 6 ) the limit value for infinitely long k -mers; and ( i i ) θ c , k has a strong dependence on k . It decreases in the range 2 ≤ k < 48 , goes through a minimum around k = 48 , and increases smoothly from k = 48 up to the largest studied value of k = 128 . Finally, the precise determination of the critical exponents ν , β , and γ indicates that the model belongs to the same universality class as 2D standard percolation regardless of the value of k considered.
Fil: Iglesias Panuska, G. A.. Universidad Nacional de San Luis; Argentina
Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina - Materia
-
JAMMING
PERCOLATION
LATTICE
HONEYCOMB - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/136537
Ver los metadatos del registro completo
id |
CONICETDig_cb73e66eb719fc90940956db87dad59a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/136537 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Jamming and percolation of linear k -mers on honeycomb latticesIglesias Panuska, G. A.Centres, Paulo MarceloRamirez Pastor, Antonio JoseJAMMINGPERCOLATIONLATTICEHONEYCOMBhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Numerical simulations and finite-size scaling analysis have been performed to study the jamming and percolation behavior of elongated objects deposited on two-dimensional honeycomb lattices. The depositing particle is modeled as a linear array of length k (so-called k -mer), maximizing the distance between first and last monomers in the chain. The separation between k -mer units is equal to the lattice constant. Hence, k sites are occupied by a k -mer when adsorbed onto the surface. The adsorption process starts with an initial configuration, where all lattice sites are empty. Then, the sites are occupied following a random sequential adsorption mechanism. The process finishes when the jamming state is reached and no more objects can be deposited due to the absence of empty site clusters of appropriate size and shape. Jamming coverage θ j , k and percolation threshold θ c , k were determined for a wide range of values of k ( 2 ≤ k ≤ 128 ). The obtained results shows that ( i ) θ j , k is a decreasing function with increasing k , being θ j , k → ∞ = 0.6007 ( 6 ) the limit value for infinitely long k -mers; and ( i i ) θ c , k has a strong dependence on k . It decreases in the range 2 ≤ k < 48 , goes through a minimum around k = 48 , and increases smoothly from k = 48 up to the largest studied value of k = 128 . Finally, the precise determination of the critical exponents ν , β , and γ indicates that the model belongs to the same universality class as 2D standard percolation regardless of the value of k considered.Fil: Iglesias Panuska, G. A.. Universidad Nacional de San Luis; ArgentinaFil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaAmerican Physical Society2020-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/136537Iglesias Panuska, G. A.; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Jamming and percolation of linear k -mers on honeycomb lattices; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 102; 3; 9-2020; 1-11; 0321232470-00452470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.102.032123info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.102.032123info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:52Zoai:ri.conicet.gov.ar:11336/136537instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:52.547CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Jamming and percolation of linear k -mers on honeycomb lattices |
title |
Jamming and percolation of linear k -mers on honeycomb lattices |
spellingShingle |
Jamming and percolation of linear k -mers on honeycomb lattices Iglesias Panuska, G. A. JAMMING PERCOLATION LATTICE HONEYCOMB |
title_short |
Jamming and percolation of linear k -mers on honeycomb lattices |
title_full |
Jamming and percolation of linear k -mers on honeycomb lattices |
title_fullStr |
Jamming and percolation of linear k -mers on honeycomb lattices |
title_full_unstemmed |
Jamming and percolation of linear k -mers on honeycomb lattices |
title_sort |
Jamming and percolation of linear k -mers on honeycomb lattices |
dc.creator.none.fl_str_mv |
Iglesias Panuska, G. A. Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose |
author |
Iglesias Panuska, G. A. |
author_facet |
Iglesias Panuska, G. A. Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose |
author_role |
author |
author2 |
Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose |
author2_role |
author author |
dc.subject.none.fl_str_mv |
JAMMING PERCOLATION LATTICE HONEYCOMB |
topic |
JAMMING PERCOLATION LATTICE HONEYCOMB |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Numerical simulations and finite-size scaling analysis have been performed to study the jamming and percolation behavior of elongated objects deposited on two-dimensional honeycomb lattices. The depositing particle is modeled as a linear array of length k (so-called k -mer), maximizing the distance between first and last monomers in the chain. The separation between k -mer units is equal to the lattice constant. Hence, k sites are occupied by a k -mer when adsorbed onto the surface. The adsorption process starts with an initial configuration, where all lattice sites are empty. Then, the sites are occupied following a random sequential adsorption mechanism. The process finishes when the jamming state is reached and no more objects can be deposited due to the absence of empty site clusters of appropriate size and shape. Jamming coverage θ j , k and percolation threshold θ c , k were determined for a wide range of values of k ( 2 ≤ k ≤ 128 ). The obtained results shows that ( i ) θ j , k is a decreasing function with increasing k , being θ j , k → ∞ = 0.6007 ( 6 ) the limit value for infinitely long k -mers; and ( i i ) θ c , k has a strong dependence on k . It decreases in the range 2 ≤ k < 48 , goes through a minimum around k = 48 , and increases smoothly from k = 48 up to the largest studied value of k = 128 . Finally, the precise determination of the critical exponents ν , β , and γ indicates that the model belongs to the same universality class as 2D standard percolation regardless of the value of k considered. Fil: Iglesias Panuska, G. A.. Universidad Nacional de San Luis; Argentina Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina |
description |
Numerical simulations and finite-size scaling analysis have been performed to study the jamming and percolation behavior of elongated objects deposited on two-dimensional honeycomb lattices. The depositing particle is modeled as a linear array of length k (so-called k -mer), maximizing the distance between first and last monomers in the chain. The separation between k -mer units is equal to the lattice constant. Hence, k sites are occupied by a k -mer when adsorbed onto the surface. The adsorption process starts with an initial configuration, where all lattice sites are empty. Then, the sites are occupied following a random sequential adsorption mechanism. The process finishes when the jamming state is reached and no more objects can be deposited due to the absence of empty site clusters of appropriate size and shape. Jamming coverage θ j , k and percolation threshold θ c , k were determined for a wide range of values of k ( 2 ≤ k ≤ 128 ). The obtained results shows that ( i ) θ j , k is a decreasing function with increasing k , being θ j , k → ∞ = 0.6007 ( 6 ) the limit value for infinitely long k -mers; and ( i i ) θ c , k has a strong dependence on k . It decreases in the range 2 ≤ k < 48 , goes through a minimum around k = 48 , and increases smoothly from k = 48 up to the largest studied value of k = 128 . Finally, the precise determination of the critical exponents ν , β , and γ indicates that the model belongs to the same universality class as 2D standard percolation regardless of the value of k considered. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/136537 Iglesias Panuska, G. A.; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Jamming and percolation of linear k -mers on honeycomb lattices; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 102; 3; 9-2020; 1-11; 032123 2470-0045 2470-0053 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/136537 |
identifier_str_mv |
Iglesias Panuska, G. A.; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Jamming and percolation of linear k -mers on honeycomb lattices; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 102; 3; 9-2020; 1-11; 032123 2470-0045 2470-0053 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.102.032123 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.102.032123 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270060458016768 |
score |
13.13397 |