Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices

Autores
De La Cruz Félix, Nelphy; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Vogel, Eugenio Emilio; Valdés, Julio Félix
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Irreversible multilayer adsorption of semirigid k -mers on one-dimensional lattices of size L is studied by numerical simulations complemented by exhaustive enumeration of configurations for small lattices. The deposition process is modeled by using a random sequential adsorption algorithm, generalized to the case of multilayer adsorption. The paper concentrates on measuring the jamming coverage for different values of k -mer size and number of layers n . The bilayer problem ( n ≤ 2 ) is exhaustively analyzed, and the resulting tendencies are validated by the exact enumeration techniques. Then, the study is extended to an increasing number of layers, which is one of the noteworthy parts of this work. The obtained results allow the following: (i) to characterize the structure of the adsorbed phase for the multilayer problem. As n increases, the ( 1 + 1 ) -dimensional adsorbed phase tends to be a “partial wall” consisting of “towers” (or columns) of width k , separated by valleys of empty sites. The length of these valleys diminishes with increasing k ; (ii) to establish that this is an in-registry adsorption process, where each incoming k -mer is likely to be adsorbed exactly onto an already adsorbed one. With respect to percolation, our calculations show that the percolation probability vanishes as L increases, being zero in the limit L → ∞ . Finally, the value of the jamming critical exponent ν j is reported here for multilayer adsorption: ν j remains close to 2 regardless of the considered values of k and n . This finding is discussed in terms of the lattice dimensionality.
Fil: De La Cruz Félix, Nelphy. Universidad Nacional de San Luis; Argentina. Universidad Autonoma de Santo Domingo.; República Dominicana
Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Vogel, Eugenio Emilio. Universidad de La Frontera; Chile. Center for the Development of Nanoscience and Nanotechnology; Chile
Fil: Valdés, Julio Félix. Universidad de La Frontera; Chile
Materia
JAMMING
PERCOLATION
SEMIIRIGID
K-MERS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/136536

id CONICETDig_3bb69ca04239cba4b3df219c87013271
oai_identifier_str oai:ri.conicet.gov.ar:11336/136536
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional latticesDe La Cruz Félix, NelphyCentres, Paulo MarceloRamirez Pastor, Antonio JoseVogel, Eugenio EmilioValdés, Julio FélixJAMMINGPERCOLATIONSEMIIRIGIDK-MERShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Irreversible multilayer adsorption of semirigid k -mers on one-dimensional lattices of size L is studied by numerical simulations complemented by exhaustive enumeration of configurations for small lattices. The deposition process is modeled by using a random sequential adsorption algorithm, generalized to the case of multilayer adsorption. The paper concentrates on measuring the jamming coverage for different values of k -mer size and number of layers n . The bilayer problem ( n ≤ 2 ) is exhaustively analyzed, and the resulting tendencies are validated by the exact enumeration techniques. Then, the study is extended to an increasing number of layers, which is one of the noteworthy parts of this work. The obtained results allow the following: (i) to characterize the structure of the adsorbed phase for the multilayer problem. As n increases, the ( 1 + 1 ) -dimensional adsorbed phase tends to be a “partial wall” consisting of “towers” (or columns) of width k , separated by valleys of empty sites. The length of these valleys diminishes with increasing k ; (ii) to establish that this is an in-registry adsorption process, where each incoming k -mer is likely to be adsorbed exactly onto an already adsorbed one. With respect to percolation, our calculations show that the percolation probability vanishes as L increases, being zero in the limit L → ∞ . Finally, the value of the jamming critical exponent ν j is reported here for multilayer adsorption: ν j remains close to 2 regardless of the considered values of k and n . This finding is discussed in terms of the lattice dimensionality.Fil: De La Cruz Félix, Nelphy. Universidad Nacional de San Luis; Argentina. Universidad Autonoma de Santo Domingo.; República DominicanaFil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Vogel, Eugenio Emilio. Universidad de La Frontera; Chile. Center for the Development of Nanoscience and Nanotechnology; ChileFil: Valdés, Julio Félix. Universidad de La Frontera; ChileAmerican Physical Society2020-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/136536De La Cruz Félix, Nelphy; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Vogel, Eugenio Emilio; Valdés, Julio Félix; Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 102; 1; 7-2020; 1-11; 0121062470-00452470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.102.012106info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.102.012106info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:29Zoai:ri.conicet.gov.ar:11336/136536instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:30.149CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices
title Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices
spellingShingle Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices
De La Cruz Félix, Nelphy
JAMMING
PERCOLATION
SEMIIRIGID
K-MERS
title_short Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices
title_full Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices
title_fullStr Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices
title_full_unstemmed Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices
title_sort Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices
dc.creator.none.fl_str_mv De La Cruz Félix, Nelphy
Centres, Paulo Marcelo
Ramirez Pastor, Antonio Jose
Vogel, Eugenio Emilio
Valdés, Julio Félix
author De La Cruz Félix, Nelphy
author_facet De La Cruz Félix, Nelphy
Centres, Paulo Marcelo
Ramirez Pastor, Antonio Jose
Vogel, Eugenio Emilio
Valdés, Julio Félix
author_role author
author2 Centres, Paulo Marcelo
Ramirez Pastor, Antonio Jose
Vogel, Eugenio Emilio
Valdés, Julio Félix
author2_role author
author
author
author
dc.subject.none.fl_str_mv JAMMING
PERCOLATION
SEMIIRIGID
K-MERS
topic JAMMING
PERCOLATION
SEMIIRIGID
K-MERS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Irreversible multilayer adsorption of semirigid k -mers on one-dimensional lattices of size L is studied by numerical simulations complemented by exhaustive enumeration of configurations for small lattices. The deposition process is modeled by using a random sequential adsorption algorithm, generalized to the case of multilayer adsorption. The paper concentrates on measuring the jamming coverage for different values of k -mer size and number of layers n . The bilayer problem ( n ≤ 2 ) is exhaustively analyzed, and the resulting tendencies are validated by the exact enumeration techniques. Then, the study is extended to an increasing number of layers, which is one of the noteworthy parts of this work. The obtained results allow the following: (i) to characterize the structure of the adsorbed phase for the multilayer problem. As n increases, the ( 1 + 1 ) -dimensional adsorbed phase tends to be a “partial wall” consisting of “towers” (or columns) of width k , separated by valleys of empty sites. The length of these valleys diminishes with increasing k ; (ii) to establish that this is an in-registry adsorption process, where each incoming k -mer is likely to be adsorbed exactly onto an already adsorbed one. With respect to percolation, our calculations show that the percolation probability vanishes as L increases, being zero in the limit L → ∞ . Finally, the value of the jamming critical exponent ν j is reported here for multilayer adsorption: ν j remains close to 2 regardless of the considered values of k and n . This finding is discussed in terms of the lattice dimensionality.
Fil: De La Cruz Félix, Nelphy. Universidad Nacional de San Luis; Argentina. Universidad Autonoma de Santo Domingo.; República Dominicana
Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Vogel, Eugenio Emilio. Universidad de La Frontera; Chile. Center for the Development of Nanoscience and Nanotechnology; Chile
Fil: Valdés, Julio Félix. Universidad de La Frontera; Chile
description Irreversible multilayer adsorption of semirigid k -mers on one-dimensional lattices of size L is studied by numerical simulations complemented by exhaustive enumeration of configurations for small lattices. The deposition process is modeled by using a random sequential adsorption algorithm, generalized to the case of multilayer adsorption. The paper concentrates on measuring the jamming coverage for different values of k -mer size and number of layers n . The bilayer problem ( n ≤ 2 ) is exhaustively analyzed, and the resulting tendencies are validated by the exact enumeration techniques. Then, the study is extended to an increasing number of layers, which is one of the noteworthy parts of this work. The obtained results allow the following: (i) to characterize the structure of the adsorbed phase for the multilayer problem. As n increases, the ( 1 + 1 ) -dimensional adsorbed phase tends to be a “partial wall” consisting of “towers” (or columns) of width k , separated by valleys of empty sites. The length of these valleys diminishes with increasing k ; (ii) to establish that this is an in-registry adsorption process, where each incoming k -mer is likely to be adsorbed exactly onto an already adsorbed one. With respect to percolation, our calculations show that the percolation probability vanishes as L increases, being zero in the limit L → ∞ . Finally, the value of the jamming critical exponent ν j is reported here for multilayer adsorption: ν j remains close to 2 regardless of the considered values of k and n . This finding is discussed in terms of the lattice dimensionality.
publishDate 2020
dc.date.none.fl_str_mv 2020-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/136536
De La Cruz Félix, Nelphy; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Vogel, Eugenio Emilio; Valdés, Julio Félix; Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 102; 1; 7-2020; 1-11; 012106
2470-0045
2470-0053
CONICET Digital
CONICET
url http://hdl.handle.net/11336/136536
identifier_str_mv De La Cruz Félix, Nelphy; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Vogel, Eugenio Emilio; Valdés, Julio Félix; Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 102; 1; 7-2020; 1-11; 012106
2470-0045
2470-0053
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.102.012106
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.102.012106
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269523526287360
score 13.13397