Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices
- Autores
- De La Cruz Félix, Nelphy; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Vogel, Eugenio Emilio; Valdés, Julio Félix
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Irreversible multilayer adsorption of semirigid k -mers on one-dimensional lattices of size L is studied by numerical simulations complemented by exhaustive enumeration of configurations for small lattices. The deposition process is modeled by using a random sequential adsorption algorithm, generalized to the case of multilayer adsorption. The paper concentrates on measuring the jamming coverage for different values of k -mer size and number of layers n . The bilayer problem ( n ≤ 2 ) is exhaustively analyzed, and the resulting tendencies are validated by the exact enumeration techniques. Then, the study is extended to an increasing number of layers, which is one of the noteworthy parts of this work. The obtained results allow the following: (i) to characterize the structure of the adsorbed phase for the multilayer problem. As n increases, the ( 1 + 1 ) -dimensional adsorbed phase tends to be a “partial wall” consisting of “towers” (or columns) of width k , separated by valleys of empty sites. The length of these valleys diminishes with increasing k ; (ii) to establish that this is an in-registry adsorption process, where each incoming k -mer is likely to be adsorbed exactly onto an already adsorbed one. With respect to percolation, our calculations show that the percolation probability vanishes as L increases, being zero in the limit L → ∞ . Finally, the value of the jamming critical exponent ν j is reported here for multilayer adsorption: ν j remains close to 2 regardless of the considered values of k and n . This finding is discussed in terms of the lattice dimensionality.
Fil: De La Cruz Félix, Nelphy. Universidad Nacional de San Luis; Argentina. Universidad Autonoma de Santo Domingo.; República Dominicana
Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Vogel, Eugenio Emilio. Universidad de La Frontera; Chile. Center for the Development of Nanoscience and Nanotechnology; Chile
Fil: Valdés, Julio Félix. Universidad de La Frontera; Chile - Materia
-
JAMMING
PERCOLATION
SEMIIRIGID
K-MERS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/136536
Ver los metadatos del registro completo
id |
CONICETDig_3bb69ca04239cba4b3df219c87013271 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/136536 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional latticesDe La Cruz Félix, NelphyCentres, Paulo MarceloRamirez Pastor, Antonio JoseVogel, Eugenio EmilioValdés, Julio FélixJAMMINGPERCOLATIONSEMIIRIGIDK-MERShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Irreversible multilayer adsorption of semirigid k -mers on one-dimensional lattices of size L is studied by numerical simulations complemented by exhaustive enumeration of configurations for small lattices. The deposition process is modeled by using a random sequential adsorption algorithm, generalized to the case of multilayer adsorption. The paper concentrates on measuring the jamming coverage for different values of k -mer size and number of layers n . The bilayer problem ( n ≤ 2 ) is exhaustively analyzed, and the resulting tendencies are validated by the exact enumeration techniques. Then, the study is extended to an increasing number of layers, which is one of the noteworthy parts of this work. The obtained results allow the following: (i) to characterize the structure of the adsorbed phase for the multilayer problem. As n increases, the ( 1 + 1 ) -dimensional adsorbed phase tends to be a “partial wall” consisting of “towers” (or columns) of width k , separated by valleys of empty sites. The length of these valleys diminishes with increasing k ; (ii) to establish that this is an in-registry adsorption process, where each incoming k -mer is likely to be adsorbed exactly onto an already adsorbed one. With respect to percolation, our calculations show that the percolation probability vanishes as L increases, being zero in the limit L → ∞ . Finally, the value of the jamming critical exponent ν j is reported here for multilayer adsorption: ν j remains close to 2 regardless of the considered values of k and n . This finding is discussed in terms of the lattice dimensionality.Fil: De La Cruz Félix, Nelphy. Universidad Nacional de San Luis; Argentina. Universidad Autonoma de Santo Domingo.; República DominicanaFil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Vogel, Eugenio Emilio. Universidad de La Frontera; Chile. Center for the Development of Nanoscience and Nanotechnology; ChileFil: Valdés, Julio Félix. Universidad de La Frontera; ChileAmerican Physical Society2020-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/136536De La Cruz Félix, Nelphy; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Vogel, Eugenio Emilio; Valdés, Julio Félix; Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 102; 1; 7-2020; 1-11; 0121062470-00452470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.102.012106info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.102.012106info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:29Zoai:ri.conicet.gov.ar:11336/136536instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:30.149CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices |
title |
Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices |
spellingShingle |
Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices De La Cruz Félix, Nelphy JAMMING PERCOLATION SEMIIRIGID K-MERS |
title_short |
Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices |
title_full |
Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices |
title_fullStr |
Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices |
title_full_unstemmed |
Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices |
title_sort |
Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices |
dc.creator.none.fl_str_mv |
De La Cruz Félix, Nelphy Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose Vogel, Eugenio Emilio Valdés, Julio Félix |
author |
De La Cruz Félix, Nelphy |
author_facet |
De La Cruz Félix, Nelphy Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose Vogel, Eugenio Emilio Valdés, Julio Félix |
author_role |
author |
author2 |
Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose Vogel, Eugenio Emilio Valdés, Julio Félix |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
JAMMING PERCOLATION SEMIIRIGID K-MERS |
topic |
JAMMING PERCOLATION SEMIIRIGID K-MERS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Irreversible multilayer adsorption of semirigid k -mers on one-dimensional lattices of size L is studied by numerical simulations complemented by exhaustive enumeration of configurations for small lattices. The deposition process is modeled by using a random sequential adsorption algorithm, generalized to the case of multilayer adsorption. The paper concentrates on measuring the jamming coverage for different values of k -mer size and number of layers n . The bilayer problem ( n ≤ 2 ) is exhaustively analyzed, and the resulting tendencies are validated by the exact enumeration techniques. Then, the study is extended to an increasing number of layers, which is one of the noteworthy parts of this work. The obtained results allow the following: (i) to characterize the structure of the adsorbed phase for the multilayer problem. As n increases, the ( 1 + 1 ) -dimensional adsorbed phase tends to be a “partial wall” consisting of “towers” (or columns) of width k , separated by valleys of empty sites. The length of these valleys diminishes with increasing k ; (ii) to establish that this is an in-registry adsorption process, where each incoming k -mer is likely to be adsorbed exactly onto an already adsorbed one. With respect to percolation, our calculations show that the percolation probability vanishes as L increases, being zero in the limit L → ∞ . Finally, the value of the jamming critical exponent ν j is reported here for multilayer adsorption: ν j remains close to 2 regardless of the considered values of k and n . This finding is discussed in terms of the lattice dimensionality. Fil: De La Cruz Félix, Nelphy. Universidad Nacional de San Luis; Argentina. Universidad Autonoma de Santo Domingo.; República Dominicana Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Vogel, Eugenio Emilio. Universidad de La Frontera; Chile. Center for the Development of Nanoscience and Nanotechnology; Chile Fil: Valdés, Julio Félix. Universidad de La Frontera; Chile |
description |
Irreversible multilayer adsorption of semirigid k -mers on one-dimensional lattices of size L is studied by numerical simulations complemented by exhaustive enumeration of configurations for small lattices. The deposition process is modeled by using a random sequential adsorption algorithm, generalized to the case of multilayer adsorption. The paper concentrates on measuring the jamming coverage for different values of k -mer size and number of layers n . The bilayer problem ( n ≤ 2 ) is exhaustively analyzed, and the resulting tendencies are validated by the exact enumeration techniques. Then, the study is extended to an increasing number of layers, which is one of the noteworthy parts of this work. The obtained results allow the following: (i) to characterize the structure of the adsorbed phase for the multilayer problem. As n increases, the ( 1 + 1 ) -dimensional adsorbed phase tends to be a “partial wall” consisting of “towers” (or columns) of width k , separated by valleys of empty sites. The length of these valleys diminishes with increasing k ; (ii) to establish that this is an in-registry adsorption process, where each incoming k -mer is likely to be adsorbed exactly onto an already adsorbed one. With respect to percolation, our calculations show that the percolation probability vanishes as L increases, being zero in the limit L → ∞ . Finally, the value of the jamming critical exponent ν j is reported here for multilayer adsorption: ν j remains close to 2 regardless of the considered values of k and n . This finding is discussed in terms of the lattice dimensionality. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/136536 De La Cruz Félix, Nelphy; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Vogel, Eugenio Emilio; Valdés, Julio Félix; Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 102; 1; 7-2020; 1-11; 012106 2470-0045 2470-0053 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/136536 |
identifier_str_mv |
De La Cruz Félix, Nelphy; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Vogel, Eugenio Emilio; Valdés, Julio Félix; Irreversible multilayer adsorption of semirigid k -mers deposited on one-dimensional lattices; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 102; 1; 7-2020; 1-11; 012106 2470-0045 2470-0053 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.102.012106 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.102.012106 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269523526287360 |
score |
13.13397 |