Shock waves and commutation speed of memristors

Autores
Tang, Shao; Tesler, Federico Ariel; Gomez Marlasca, Fernando; Levy, Pablo Eduardo; Dobrosavljevic, V.; Rozenberg, Marcelo Javier
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Progress of silicon-based technology is nearing its physical limit, as the minimum feature size of components is reaching a mere 10 nm. The resistive switching behavior of transition metal oxides and the associated memristor device is emerging as a competitive technology for next-generation electronics. Significant progress has already been made in the past decade, and devices are beginning to hit the market; however, this progress has mainly been the result of empirical trial and error. Hence, gaining theoretical insight is of the essence. In the present work, we report the striking result of a connection between the resistive switching and shock-wave formation, a classic topic of nonlinear dynamics. We argue that the profile of oxygen vacancies that migrate during the commutation forms a shock wave that propagates through a highly resistive region of the device. We validate the scenario by means of model simulations and experiments in a manganese-oxide-based memristor device, and we extend our theory to the case of binary oxides. The shock-wave scenario brings unprecedented physical insight and enables us to rationalize the process of oxygen-vacancy-driven resistive change with direct implications for a key technological aspect-the commutation speed.
Fil: Tang, Shao. National High Magnetic Field Laboratory; Estados Unidos
Fil: Tesler, Federico Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Gomez Marlasca, Fernando. Comisión Nacional de Energía Atómica; Argentina
Fil: Levy, Pablo Eduardo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Dobrosavljevic, V.. National High Magnetic Field Laboratory; Estados Unidos
Fil: Rozenberg, Marcelo Javier. Université Paris Sud; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Shockwaves
memristors
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/114261

id CONICETDig_0d7e51a51fdbcdc6859c762384331e1a
oai_identifier_str oai:ri.conicet.gov.ar:11336/114261
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Shock waves and commutation speed of memristorsTang, ShaoTesler, Federico ArielGomez Marlasca, FernandoLevy, Pablo EduardoDobrosavljevic, V.Rozenberg, Marcelo JavierShockwavesmemristorshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Progress of silicon-based technology is nearing its physical limit, as the minimum feature size of components is reaching a mere 10 nm. The resistive switching behavior of transition metal oxides and the associated memristor device is emerging as a competitive technology for next-generation electronics. Significant progress has already been made in the past decade, and devices are beginning to hit the market; however, this progress has mainly been the result of empirical trial and error. Hence, gaining theoretical insight is of the essence. In the present work, we report the striking result of a connection between the resistive switching and shock-wave formation, a classic topic of nonlinear dynamics. We argue that the profile of oxygen vacancies that migrate during the commutation forms a shock wave that propagates through a highly resistive region of the device. We validate the scenario by means of model simulations and experiments in a manganese-oxide-based memristor device, and we extend our theory to the case of binary oxides. The shock-wave scenario brings unprecedented physical insight and enables us to rationalize the process of oxygen-vacancy-driven resistive change with direct implications for a key technological aspect-the commutation speed.Fil: Tang, Shao. National High Magnetic Field Laboratory; Estados UnidosFil: Tesler, Federico Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Gomez Marlasca, Fernando. Comisión Nacional de Energía Atómica; ArgentinaFil: Levy, Pablo Eduardo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Dobrosavljevic, V.. National High Magnetic Field Laboratory; Estados UnidosFil: Rozenberg, Marcelo Javier. Université Paris Sud; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/114261Tang, Shao; Tesler, Federico Ariel; Gomez Marlasca, Fernando; Levy, Pablo Eduardo; Dobrosavljevic, V.; et al.; Shock waves and commutation speed of memristors; American Physical Society; Physical Review X; 6; 1; 3-2016; 11028-110282160-3308CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prx/abstract/10.1103/PhysRevX.6.011028info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevX.6.011028info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:00Zoai:ri.conicet.gov.ar:11336/114261instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:01.247CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Shock waves and commutation speed of memristors
title Shock waves and commutation speed of memristors
spellingShingle Shock waves and commutation speed of memristors
Tang, Shao
Shockwaves
memristors
title_short Shock waves and commutation speed of memristors
title_full Shock waves and commutation speed of memristors
title_fullStr Shock waves and commutation speed of memristors
title_full_unstemmed Shock waves and commutation speed of memristors
title_sort Shock waves and commutation speed of memristors
dc.creator.none.fl_str_mv Tang, Shao
Tesler, Federico Ariel
Gomez Marlasca, Fernando
Levy, Pablo Eduardo
Dobrosavljevic, V.
Rozenberg, Marcelo Javier
author Tang, Shao
author_facet Tang, Shao
Tesler, Federico Ariel
Gomez Marlasca, Fernando
Levy, Pablo Eduardo
Dobrosavljevic, V.
Rozenberg, Marcelo Javier
author_role author
author2 Tesler, Federico Ariel
Gomez Marlasca, Fernando
Levy, Pablo Eduardo
Dobrosavljevic, V.
Rozenberg, Marcelo Javier
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Shockwaves
memristors
topic Shockwaves
memristors
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Progress of silicon-based technology is nearing its physical limit, as the minimum feature size of components is reaching a mere 10 nm. The resistive switching behavior of transition metal oxides and the associated memristor device is emerging as a competitive technology for next-generation electronics. Significant progress has already been made in the past decade, and devices are beginning to hit the market; however, this progress has mainly been the result of empirical trial and error. Hence, gaining theoretical insight is of the essence. In the present work, we report the striking result of a connection between the resistive switching and shock-wave formation, a classic topic of nonlinear dynamics. We argue that the profile of oxygen vacancies that migrate during the commutation forms a shock wave that propagates through a highly resistive region of the device. We validate the scenario by means of model simulations and experiments in a manganese-oxide-based memristor device, and we extend our theory to the case of binary oxides. The shock-wave scenario brings unprecedented physical insight and enables us to rationalize the process of oxygen-vacancy-driven resistive change with direct implications for a key technological aspect-the commutation speed.
Fil: Tang, Shao. National High Magnetic Field Laboratory; Estados Unidos
Fil: Tesler, Federico Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Gomez Marlasca, Fernando. Comisión Nacional de Energía Atómica; Argentina
Fil: Levy, Pablo Eduardo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Dobrosavljevic, V.. National High Magnetic Field Laboratory; Estados Unidos
Fil: Rozenberg, Marcelo Javier. Université Paris Sud; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Progress of silicon-based technology is nearing its physical limit, as the minimum feature size of components is reaching a mere 10 nm. The resistive switching behavior of transition metal oxides and the associated memristor device is emerging as a competitive technology for next-generation electronics. Significant progress has already been made in the past decade, and devices are beginning to hit the market; however, this progress has mainly been the result of empirical trial and error. Hence, gaining theoretical insight is of the essence. In the present work, we report the striking result of a connection between the resistive switching and shock-wave formation, a classic topic of nonlinear dynamics. We argue that the profile of oxygen vacancies that migrate during the commutation forms a shock wave that propagates through a highly resistive region of the device. We validate the scenario by means of model simulations and experiments in a manganese-oxide-based memristor device, and we extend our theory to the case of binary oxides. The shock-wave scenario brings unprecedented physical insight and enables us to rationalize the process of oxygen-vacancy-driven resistive change with direct implications for a key technological aspect-the commutation speed.
publishDate 2016
dc.date.none.fl_str_mv 2016-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/114261
Tang, Shao; Tesler, Federico Ariel; Gomez Marlasca, Fernando; Levy, Pablo Eduardo; Dobrosavljevic, V.; et al.; Shock waves and commutation speed of memristors; American Physical Society; Physical Review X; 6; 1; 3-2016; 11028-11028
2160-3308
CONICET Digital
CONICET
url http://hdl.handle.net/11336/114261
identifier_str_mv Tang, Shao; Tesler, Federico Ariel; Gomez Marlasca, Fernando; Levy, Pablo Eduardo; Dobrosavljevic, V.; et al.; Shock waves and commutation speed of memristors; American Physical Society; Physical Review X; 6; 1; 3-2016; 11028-11028
2160-3308
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prx/abstract/10.1103/PhysRevX.6.011028
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevX.6.011028
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613862906658816
score 13.070432