Shock waves and commutation speed of memristors
- Autores
- Tang, Shao; Tesler, Federico Ariel; Gomez Marlasca, Fernando; Levy, Pablo Eduardo; Dobrosavljevic, V.; Rozenberg, Marcelo Javier
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Progress of silicon-based technology is nearing its physical limit, as the minimum feature size of components is reaching a mere 10 nm. The resistive switching behavior of transition metal oxides and the associated memristor device is emerging as a competitive technology for next-generation electronics. Significant progress has already been made in the past decade, and devices are beginning to hit the market; however, this progress has mainly been the result of empirical trial and error. Hence, gaining theoretical insight is of the essence. In the present work, we report the striking result of a connection between the resistive switching and shock-wave formation, a classic topic of nonlinear dynamics. We argue that the profile of oxygen vacancies that migrate during the commutation forms a shock wave that propagates through a highly resistive region of the device. We validate the scenario by means of model simulations and experiments in a manganese-oxide-based memristor device, and we extend our theory to the case of binary oxides. The shock-wave scenario brings unprecedented physical insight and enables us to rationalize the process of oxygen-vacancy-driven resistive change with direct implications for a key technological aspect-the commutation speed.
Fil: Tang, Shao. National High Magnetic Field Laboratory; Estados Unidos
Fil: Tesler, Federico Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Gomez Marlasca, Fernando. Comisión Nacional de Energía Atómica; Argentina
Fil: Levy, Pablo Eduardo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Dobrosavljevic, V.. National High Magnetic Field Laboratory; Estados Unidos
Fil: Rozenberg, Marcelo Javier. Université Paris Sud; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Shockwaves
memristors - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/114261
Ver los metadatos del registro completo
| id |
CONICETDig_0d7e51a51fdbcdc6859c762384331e1a |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/114261 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Shock waves and commutation speed of memristorsTang, ShaoTesler, Federico ArielGomez Marlasca, FernandoLevy, Pablo EduardoDobrosavljevic, V.Rozenberg, Marcelo JavierShockwavesmemristorshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Progress of silicon-based technology is nearing its physical limit, as the minimum feature size of components is reaching a mere 10 nm. The resistive switching behavior of transition metal oxides and the associated memristor device is emerging as a competitive technology for next-generation electronics. Significant progress has already been made in the past decade, and devices are beginning to hit the market; however, this progress has mainly been the result of empirical trial and error. Hence, gaining theoretical insight is of the essence. In the present work, we report the striking result of a connection between the resistive switching and shock-wave formation, a classic topic of nonlinear dynamics. We argue that the profile of oxygen vacancies that migrate during the commutation forms a shock wave that propagates through a highly resistive region of the device. We validate the scenario by means of model simulations and experiments in a manganese-oxide-based memristor device, and we extend our theory to the case of binary oxides. The shock-wave scenario brings unprecedented physical insight and enables us to rationalize the process of oxygen-vacancy-driven resistive change with direct implications for a key technological aspect-the commutation speed.Fil: Tang, Shao. National High Magnetic Field Laboratory; Estados UnidosFil: Tesler, Federico Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Gomez Marlasca, Fernando. Comisión Nacional de Energía Atómica; ArgentinaFil: Levy, Pablo Eduardo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Dobrosavljevic, V.. National High Magnetic Field Laboratory; Estados UnidosFil: Rozenberg, Marcelo Javier. Université Paris Sud; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/114261Tang, Shao; Tesler, Federico Ariel; Gomez Marlasca, Fernando; Levy, Pablo Eduardo; Dobrosavljevic, V.; et al.; Shock waves and commutation speed of memristors; American Physical Society; Physical Review X; 6; 1; 3-2016; 11028-110282160-3308CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prx/abstract/10.1103/PhysRevX.6.011028info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevX.6.011028info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:46:40Zoai:ri.conicet.gov.ar:11336/114261instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:46:40.504CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Shock waves and commutation speed of memristors |
| title |
Shock waves and commutation speed of memristors |
| spellingShingle |
Shock waves and commutation speed of memristors Tang, Shao Shockwaves memristors |
| title_short |
Shock waves and commutation speed of memristors |
| title_full |
Shock waves and commutation speed of memristors |
| title_fullStr |
Shock waves and commutation speed of memristors |
| title_full_unstemmed |
Shock waves and commutation speed of memristors |
| title_sort |
Shock waves and commutation speed of memristors |
| dc.creator.none.fl_str_mv |
Tang, Shao Tesler, Federico Ariel Gomez Marlasca, Fernando Levy, Pablo Eduardo Dobrosavljevic, V. Rozenberg, Marcelo Javier |
| author |
Tang, Shao |
| author_facet |
Tang, Shao Tesler, Federico Ariel Gomez Marlasca, Fernando Levy, Pablo Eduardo Dobrosavljevic, V. Rozenberg, Marcelo Javier |
| author_role |
author |
| author2 |
Tesler, Federico Ariel Gomez Marlasca, Fernando Levy, Pablo Eduardo Dobrosavljevic, V. Rozenberg, Marcelo Javier |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
Shockwaves memristors |
| topic |
Shockwaves memristors |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Progress of silicon-based technology is nearing its physical limit, as the minimum feature size of components is reaching a mere 10 nm. The resistive switching behavior of transition metal oxides and the associated memristor device is emerging as a competitive technology for next-generation electronics. Significant progress has already been made in the past decade, and devices are beginning to hit the market; however, this progress has mainly been the result of empirical trial and error. Hence, gaining theoretical insight is of the essence. In the present work, we report the striking result of a connection between the resistive switching and shock-wave formation, a classic topic of nonlinear dynamics. We argue that the profile of oxygen vacancies that migrate during the commutation forms a shock wave that propagates through a highly resistive region of the device. We validate the scenario by means of model simulations and experiments in a manganese-oxide-based memristor device, and we extend our theory to the case of binary oxides. The shock-wave scenario brings unprecedented physical insight and enables us to rationalize the process of oxygen-vacancy-driven resistive change with direct implications for a key technological aspect-the commutation speed. Fil: Tang, Shao. National High Magnetic Field Laboratory; Estados Unidos Fil: Tesler, Federico Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Gomez Marlasca, Fernando. Comisión Nacional de Energía Atómica; Argentina Fil: Levy, Pablo Eduardo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Dobrosavljevic, V.. National High Magnetic Field Laboratory; Estados Unidos Fil: Rozenberg, Marcelo Javier. Université Paris Sud; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
Progress of silicon-based technology is nearing its physical limit, as the minimum feature size of components is reaching a mere 10 nm. The resistive switching behavior of transition metal oxides and the associated memristor device is emerging as a competitive technology for next-generation electronics. Significant progress has already been made in the past decade, and devices are beginning to hit the market; however, this progress has mainly been the result of empirical trial and error. Hence, gaining theoretical insight is of the essence. In the present work, we report the striking result of a connection between the resistive switching and shock-wave formation, a classic topic of nonlinear dynamics. We argue that the profile of oxygen vacancies that migrate during the commutation forms a shock wave that propagates through a highly resistive region of the device. We validate the scenario by means of model simulations and experiments in a manganese-oxide-based memristor device, and we extend our theory to the case of binary oxides. The shock-wave scenario brings unprecedented physical insight and enables us to rationalize the process of oxygen-vacancy-driven resistive change with direct implications for a key technological aspect-the commutation speed. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/114261 Tang, Shao; Tesler, Federico Ariel; Gomez Marlasca, Fernando; Levy, Pablo Eduardo; Dobrosavljevic, V.; et al.; Shock waves and commutation speed of memristors; American Physical Society; Physical Review X; 6; 1; 3-2016; 11028-11028 2160-3308 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/114261 |
| identifier_str_mv |
Tang, Shao; Tesler, Federico Ariel; Gomez Marlasca, Fernando; Levy, Pablo Eduardo; Dobrosavljevic, V.; et al.; Shock waves and commutation speed of memristors; American Physical Society; Physical Review X; 6; 1; 3-2016; 11028-11028 2160-3308 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prx/abstract/10.1103/PhysRevX.6.011028 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevX.6.011028 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Physical Society |
| publisher.none.fl_str_mv |
American Physical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597902073528320 |
| score |
13.24909 |