Bounded holomorphic functions attaining their norms in the bidual
- Autores
- Carando, Daniel Germán; Mazzitelli, Martin Diego
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Under certain hypotheses on the Banach space X, we prove that the set of analytic functions in Au(X) (the algebra of all holomorphic and uniformly continuous functions in the ball of X) whose Aron–Berner extensions attain their norms is dense in Au(X). This Lindenstrauss type result also holds for functions with values in a dual space or in a Banach space with the so-called property (β). We show that the Bishop–Phelps theorem does not hold for Au(c0, Z00) for a certain Banach space Z, while our Lindenstrauss theorem does. In order to obtain our results, we first handle their polynomial cases.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Mazzitelli, Martin Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Integral Formula
Norm Attaining Holomorphic Functions
Lindenstrauss-Type Theorems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18900
Ver los metadatos del registro completo
| id |
CONICETDig_061fbe8f97c7b336387294581bab4b35 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18900 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Bounded holomorphic functions attaining their norms in the bidualCarando, Daniel GermánMazzitelli, Martin DiegoIntegral FormulaNorm Attaining Holomorphic FunctionsLindenstrauss-Type Theoremshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Under certain hypotheses on the Banach space X, we prove that the set of analytic functions in Au(X) (the algebra of all holomorphic and uniformly continuous functions in the ball of X) whose Aron–Berner extensions attain their norms is dense in Au(X). This Lindenstrauss type result also holds for functions with values in a dual space or in a Banach space with the so-called property (β). We show that the Bishop–Phelps theorem does not hold for Au(c0, Z00) for a certain Banach space Z, while our Lindenstrauss theorem does. In order to obtain our results, we first handle their polynomial cases.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Mazzitelli, Martin Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaKyoto Univ2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18900Carando, Daniel Germán; Mazzitelli, Martin Diego; Bounded holomorphic functions attaining their norms in the bidual; Kyoto Univ; Publications Of The Research Institute For Mathematical Sciences; 51; 3; 3-2015; 489-5120034-5318CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4171/PRIMS/162info:eu-repo/semantics/altIdentifier/url/http://www.ems-ph.org/journals/show_abstract.php?issn=0034-5318&vol=51&iss=3&rank=3info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1403.6431info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:18:56Zoai:ri.conicet.gov.ar:11336/18900instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:18:56.849CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Bounded holomorphic functions attaining their norms in the bidual |
| title |
Bounded holomorphic functions attaining their norms in the bidual |
| spellingShingle |
Bounded holomorphic functions attaining their norms in the bidual Carando, Daniel Germán Integral Formula Norm Attaining Holomorphic Functions Lindenstrauss-Type Theorems |
| title_short |
Bounded holomorphic functions attaining their norms in the bidual |
| title_full |
Bounded holomorphic functions attaining their norms in the bidual |
| title_fullStr |
Bounded holomorphic functions attaining their norms in the bidual |
| title_full_unstemmed |
Bounded holomorphic functions attaining their norms in the bidual |
| title_sort |
Bounded holomorphic functions attaining their norms in the bidual |
| dc.creator.none.fl_str_mv |
Carando, Daniel Germán Mazzitelli, Martin Diego |
| author |
Carando, Daniel Germán |
| author_facet |
Carando, Daniel Germán Mazzitelli, Martin Diego |
| author_role |
author |
| author2 |
Mazzitelli, Martin Diego |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Integral Formula Norm Attaining Holomorphic Functions Lindenstrauss-Type Theorems |
| topic |
Integral Formula Norm Attaining Holomorphic Functions Lindenstrauss-Type Theorems |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Under certain hypotheses on the Banach space X, we prove that the set of analytic functions in Au(X) (the algebra of all holomorphic and uniformly continuous functions in the ball of X) whose Aron–Berner extensions attain their norms is dense in Au(X). This Lindenstrauss type result also holds for functions with values in a dual space or in a Banach space with the so-called property (β). We show that the Bishop–Phelps theorem does not hold for Au(c0, Z00) for a certain Banach space Z, while our Lindenstrauss theorem does. In order to obtain our results, we first handle their polynomial cases. Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Mazzitelli, Martin Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
| description |
Under certain hypotheses on the Banach space X, we prove that the set of analytic functions in Au(X) (the algebra of all holomorphic and uniformly continuous functions in the ball of X) whose Aron–Berner extensions attain their norms is dense in Au(X). This Lindenstrauss type result also holds for functions with values in a dual space or in a Banach space with the so-called property (β). We show that the Bishop–Phelps theorem does not hold for Au(c0, Z00) for a certain Banach space Z, while our Lindenstrauss theorem does. In order to obtain our results, we first handle their polynomial cases. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18900 Carando, Daniel Germán; Mazzitelli, Martin Diego; Bounded holomorphic functions attaining their norms in the bidual; Kyoto Univ; Publications Of The Research Institute For Mathematical Sciences; 51; 3; 3-2015; 489-512 0034-5318 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/18900 |
| identifier_str_mv |
Carando, Daniel Germán; Mazzitelli, Martin Diego; Bounded holomorphic functions attaining their norms in the bidual; Kyoto Univ; Publications Of The Research Institute For Mathematical Sciences; 51; 3; 3-2015; 489-512 0034-5318 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4171/PRIMS/162 info:eu-repo/semantics/altIdentifier/url/http://www.ems-ph.org/journals/show_abstract.php?issn=0034-5318&vol=51&iss=3&rank=3 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1403.6431 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Kyoto Univ |
| publisher.none.fl_str_mv |
Kyoto Univ |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782624329105408 |
| score |
12.982451 |