Feature selection for face recognition based on multi-objective evolutionary wrappers
- Autores
- Vignolo, Leandro Daniel; Milone, Diego Humberto; Scharcanski, Jacob
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Feature selection is a key issue in pattern recognition, specially when prior knowledge of the most discriminant features is not available. Moreover, in order to perform the classification task with reduced complexity and acceptable performance, usually features that are irrelevant, redundant, or noisy are excluded from the problem representation. This work presents a multi-objective wrapper, based on genetic algorithms, to select the most relevant set of features for face recognition tasks. The proposed strategy explores the space of multiple feasible selections in order to minimize the cardinality of the feature subset, and at the same time to maximize its discriminative capacity. Experimental results show that, in comparison with other state-of-the-art approaches, the proposed approach allows to improve the classification performance, while reducing the representation dimensionality.
Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina
Fil: Scharcanski, Jacob. Universidade Federal do Rio Grande do Sul. Instituto de Informatica and Dept. de Engenharia Eletrica; Brasil - Materia
-
Wrappers
Multi-Objective Genetic Algorithms
Feature Selection
Face Recognition - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14573
Ver los metadatos del registro completo
id |
CONICETDig_54cb0607438fab172301eb0253be09d2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14573 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Feature selection for face recognition based on multi-objective evolutionary wrappersVignolo, Leandro DanielMilone, Diego HumbertoScharcanski, JacobWrappersMulti-Objective Genetic AlgorithmsFeature SelectionFace Recognitionhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Feature selection is a key issue in pattern recognition, specially when prior knowledge of the most discriminant features is not available. Moreover, in order to perform the classification task with reduced complexity and acceptable performance, usually features that are irrelevant, redundant, or noisy are excluded from the problem representation. This work presents a multi-objective wrapper, based on genetic algorithms, to select the most relevant set of features for face recognition tasks. The proposed strategy explores the space of multiple feasible selections in order to minimize the cardinality of the feature subset, and at the same time to maximize its discriminative capacity. Experimental results show that, in comparison with other state-of-the-art approaches, the proposed approach allows to improve the classification performance, while reducing the representation dimensionality.Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; ArgentinaFil: Scharcanski, Jacob. Universidade Federal do Rio Grande do Sul. Instituto de Informatica and Dept. de Engenharia Eletrica; BrasilElsevier2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14573Vignolo, Leandro Daniel; Milone, Diego Humberto; Scharcanski, Jacob; Feature selection for face recognition based on multi-objective evolutionary wrappers; Elsevier; Expert Systems With Applications; 40; 13; 10-2013; 5077-50840957-4174enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2013.03.032info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417413001954info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:41Zoai:ri.conicet.gov.ar:11336/14573instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:42.058CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Feature selection for face recognition based on multi-objective evolutionary wrappers |
title |
Feature selection for face recognition based on multi-objective evolutionary wrappers |
spellingShingle |
Feature selection for face recognition based on multi-objective evolutionary wrappers Vignolo, Leandro Daniel Wrappers Multi-Objective Genetic Algorithms Feature Selection Face Recognition |
title_short |
Feature selection for face recognition based on multi-objective evolutionary wrappers |
title_full |
Feature selection for face recognition based on multi-objective evolutionary wrappers |
title_fullStr |
Feature selection for face recognition based on multi-objective evolutionary wrappers |
title_full_unstemmed |
Feature selection for face recognition based on multi-objective evolutionary wrappers |
title_sort |
Feature selection for face recognition based on multi-objective evolutionary wrappers |
dc.creator.none.fl_str_mv |
Vignolo, Leandro Daniel Milone, Diego Humberto Scharcanski, Jacob |
author |
Vignolo, Leandro Daniel |
author_facet |
Vignolo, Leandro Daniel Milone, Diego Humberto Scharcanski, Jacob |
author_role |
author |
author2 |
Milone, Diego Humberto Scharcanski, Jacob |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Wrappers Multi-Objective Genetic Algorithms Feature Selection Face Recognition |
topic |
Wrappers Multi-Objective Genetic Algorithms Feature Selection Face Recognition |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Feature selection is a key issue in pattern recognition, specially when prior knowledge of the most discriminant features is not available. Moreover, in order to perform the classification task with reduced complexity and acceptable performance, usually features that are irrelevant, redundant, or noisy are excluded from the problem representation. This work presents a multi-objective wrapper, based on genetic algorithms, to select the most relevant set of features for face recognition tasks. The proposed strategy explores the space of multiple feasible selections in order to minimize the cardinality of the feature subset, and at the same time to maximize its discriminative capacity. Experimental results show that, in comparison with other state-of-the-art approaches, the proposed approach allows to improve the classification performance, while reducing the representation dimensionality. Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina Fil: Scharcanski, Jacob. Universidade Federal do Rio Grande do Sul. Instituto de Informatica and Dept. de Engenharia Eletrica; Brasil |
description |
Feature selection is a key issue in pattern recognition, specially when prior knowledge of the most discriminant features is not available. Moreover, in order to perform the classification task with reduced complexity and acceptable performance, usually features that are irrelevant, redundant, or noisy are excluded from the problem representation. This work presents a multi-objective wrapper, based on genetic algorithms, to select the most relevant set of features for face recognition tasks. The proposed strategy explores the space of multiple feasible selections in order to minimize the cardinality of the feature subset, and at the same time to maximize its discriminative capacity. Experimental results show that, in comparison with other state-of-the-art approaches, the proposed approach allows to improve the classification performance, while reducing the representation dimensionality. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14573 Vignolo, Leandro Daniel; Milone, Diego Humberto; Scharcanski, Jacob; Feature selection for face recognition based on multi-objective evolutionary wrappers; Elsevier; Expert Systems With Applications; 40; 13; 10-2013; 5077-5084 0957-4174 |
url |
http://hdl.handle.net/11336/14573 |
identifier_str_mv |
Vignolo, Leandro Daniel; Milone, Diego Humberto; Scharcanski, Jacob; Feature selection for face recognition based on multi-objective evolutionary wrappers; Elsevier; Expert Systems With Applications; 40; 13; 10-2013; 5077-5084 0957-4174 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2013.03.032 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417413001954 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613036891963392 |
score |
13.070432 |