Multi-objective optimisation of wavelet features for phoneme recognition

Autores
Vignolo, Leandro Daniel; Rufiner, Hugo Leonardo; Milone, Diego Humberto
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
State-of-the-art speech representations provide acceptable recognition results under optimal conditions, though their performance in adverse conditions still needs to be improved. In this direction, many advances involving wavelet processing have been reported, showing significant improvements in classification performance for different kinds of signals. However, for speech signals, the problem of finding a convenient wavelet-based representation is still an open challenge. This study proposes the use of a multi-objective genetic algorithm for the optimisation of a wavelet-based representation of speech. The most relevant features are selected from a complete wavelet packet decomposition in order to maximise phoneme classification performance. Classification results for English phonemes, in different noise conditions, show significant improvements compared with well-known speech representations.
Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Materia
Automatic Speech Recognition
Wavelet Packets Transform
Genetic Algorithms
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/47801

id CONICETDig_542f2761991de681c339d127ee6af8f1
oai_identifier_str oai:ri.conicet.gov.ar:11336/47801
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multi-objective optimisation of wavelet features for phoneme recognitionVignolo, Leandro DanielRufiner, Hugo LeonardoMilone, Diego HumbertoAutomatic Speech RecognitionWavelet Packets TransformGenetic Algorithmshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1State-of-the-art speech representations provide acceptable recognition results under optimal conditions, though their performance in adverse conditions still needs to be improved. In this direction, many advances involving wavelet processing have been reported, showing significant improvements in classification performance for different kinds of signals. However, for speech signals, the problem of finding a convenient wavelet-based representation is still an open challenge. This study proposes the use of a multi-objective genetic algorithm for the optimisation of a wavelet-based representation of speech. The most relevant features are selected from a complete wavelet packet decomposition in order to maximise phoneme classification performance. Classification results for English phonemes, in different noise conditions, show significant improvements compared with well-known speech representations.Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaInstitution of Engineering and Technology2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47801Vignolo, Leandro Daniel; Rufiner, Hugo Leonardo; Milone, Diego Humberto; Multi-objective optimisation of wavelet features for phoneme recognition; Institution of Engineering and Technology; Iet Signal Processing; 10; 6; 3-2016; 685-6941751-9675CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1049/iet-spr.2015.0568info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:42Zoai:ri.conicet.gov.ar:11336/47801instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:42.321CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multi-objective optimisation of wavelet features for phoneme recognition
title Multi-objective optimisation of wavelet features for phoneme recognition
spellingShingle Multi-objective optimisation of wavelet features for phoneme recognition
Vignolo, Leandro Daniel
Automatic Speech Recognition
Wavelet Packets Transform
Genetic Algorithms
title_short Multi-objective optimisation of wavelet features for phoneme recognition
title_full Multi-objective optimisation of wavelet features for phoneme recognition
title_fullStr Multi-objective optimisation of wavelet features for phoneme recognition
title_full_unstemmed Multi-objective optimisation of wavelet features for phoneme recognition
title_sort Multi-objective optimisation of wavelet features for phoneme recognition
dc.creator.none.fl_str_mv Vignolo, Leandro Daniel
Rufiner, Hugo Leonardo
Milone, Diego Humberto
author Vignolo, Leandro Daniel
author_facet Vignolo, Leandro Daniel
Rufiner, Hugo Leonardo
Milone, Diego Humberto
author_role author
author2 Rufiner, Hugo Leonardo
Milone, Diego Humberto
author2_role author
author
dc.subject.none.fl_str_mv Automatic Speech Recognition
Wavelet Packets Transform
Genetic Algorithms
topic Automatic Speech Recognition
Wavelet Packets Transform
Genetic Algorithms
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv State-of-the-art speech representations provide acceptable recognition results under optimal conditions, though their performance in adverse conditions still needs to be improved. In this direction, many advances involving wavelet processing have been reported, showing significant improvements in classification performance for different kinds of signals. However, for speech signals, the problem of finding a convenient wavelet-based representation is still an open challenge. This study proposes the use of a multi-objective genetic algorithm for the optimisation of a wavelet-based representation of speech. The most relevant features are selected from a complete wavelet packet decomposition in order to maximise phoneme classification performance. Classification results for English phonemes, in different noise conditions, show significant improvements compared with well-known speech representations.
Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
description State-of-the-art speech representations provide acceptable recognition results under optimal conditions, though their performance in adverse conditions still needs to be improved. In this direction, many advances involving wavelet processing have been reported, showing significant improvements in classification performance for different kinds of signals. However, for speech signals, the problem of finding a convenient wavelet-based representation is still an open challenge. This study proposes the use of a multi-objective genetic algorithm for the optimisation of a wavelet-based representation of speech. The most relevant features are selected from a complete wavelet packet decomposition in order to maximise phoneme classification performance. Classification results for English phonemes, in different noise conditions, show significant improvements compared with well-known speech representations.
publishDate 2016
dc.date.none.fl_str_mv 2016-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/47801
Vignolo, Leandro Daniel; Rufiner, Hugo Leonardo; Milone, Diego Humberto; Multi-objective optimisation of wavelet features for phoneme recognition; Institution of Engineering and Technology; Iet Signal Processing; 10; 6; 3-2016; 685-694
1751-9675
CONICET Digital
CONICET
url http://hdl.handle.net/11336/47801
identifier_str_mv Vignolo, Leandro Daniel; Rufiner, Hugo Leonardo; Milone, Diego Humberto; Multi-objective optimisation of wavelet features for phoneme recognition; Institution of Engineering and Technology; Iet Signal Processing; 10; 6; 3-2016; 685-694
1751-9675
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1049/iet-spr.2015.0568
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institution of Engineering and Technology
publisher.none.fl_str_mv Institution of Engineering and Technology
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613458329337856
score 13.070432