Multi-objective optimisation of wavelet features for phoneme recognition
- Autores
- Vignolo, Leandro Daniel; Rufiner, Hugo Leonardo; Milone, Diego Humberto
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- State-of-the-art speech representations provide acceptable recognition results under optimal conditions, though their performance in adverse conditions still needs to be improved. In this direction, many advances involving wavelet processing have been reported, showing significant improvements in classification performance for different kinds of signals. However, for speech signals, the problem of finding a convenient wavelet-based representation is still an open challenge. This study proposes the use of a multi-objective genetic algorithm for the optimisation of a wavelet-based representation of speech. The most relevant features are selected from a complete wavelet packet decomposition in order to maximise phoneme classification performance. Classification results for English phonemes, in different noise conditions, show significant improvements compared with well-known speech representations.
Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina - Materia
-
Automatic Speech Recognition
Wavelet Packets Transform
Genetic Algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/47801
Ver los metadatos del registro completo
id |
CONICETDig_542f2761991de681c339d127ee6af8f1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/47801 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multi-objective optimisation of wavelet features for phoneme recognitionVignolo, Leandro DanielRufiner, Hugo LeonardoMilone, Diego HumbertoAutomatic Speech RecognitionWavelet Packets TransformGenetic Algorithmshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1State-of-the-art speech representations provide acceptable recognition results under optimal conditions, though their performance in adverse conditions still needs to be improved. In this direction, many advances involving wavelet processing have been reported, showing significant improvements in classification performance for different kinds of signals. However, for speech signals, the problem of finding a convenient wavelet-based representation is still an open challenge. This study proposes the use of a multi-objective genetic algorithm for the optimisation of a wavelet-based representation of speech. The most relevant features are selected from a complete wavelet packet decomposition in order to maximise phoneme classification performance. Classification results for English phonemes, in different noise conditions, show significant improvements compared with well-known speech representations.Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaInstitution of Engineering and Technology2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47801Vignolo, Leandro Daniel; Rufiner, Hugo Leonardo; Milone, Diego Humberto; Multi-objective optimisation of wavelet features for phoneme recognition; Institution of Engineering and Technology; Iet Signal Processing; 10; 6; 3-2016; 685-6941751-9675CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1049/iet-spr.2015.0568info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:42Zoai:ri.conicet.gov.ar:11336/47801instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:42.321CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multi-objective optimisation of wavelet features for phoneme recognition |
title |
Multi-objective optimisation of wavelet features for phoneme recognition |
spellingShingle |
Multi-objective optimisation of wavelet features for phoneme recognition Vignolo, Leandro Daniel Automatic Speech Recognition Wavelet Packets Transform Genetic Algorithms |
title_short |
Multi-objective optimisation of wavelet features for phoneme recognition |
title_full |
Multi-objective optimisation of wavelet features for phoneme recognition |
title_fullStr |
Multi-objective optimisation of wavelet features for phoneme recognition |
title_full_unstemmed |
Multi-objective optimisation of wavelet features for phoneme recognition |
title_sort |
Multi-objective optimisation of wavelet features for phoneme recognition |
dc.creator.none.fl_str_mv |
Vignolo, Leandro Daniel Rufiner, Hugo Leonardo Milone, Diego Humberto |
author |
Vignolo, Leandro Daniel |
author_facet |
Vignolo, Leandro Daniel Rufiner, Hugo Leonardo Milone, Diego Humberto |
author_role |
author |
author2 |
Rufiner, Hugo Leonardo Milone, Diego Humberto |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Automatic Speech Recognition Wavelet Packets Transform Genetic Algorithms |
topic |
Automatic Speech Recognition Wavelet Packets Transform Genetic Algorithms |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
State-of-the-art speech representations provide acceptable recognition results under optimal conditions, though their performance in adverse conditions still needs to be improved. In this direction, many advances involving wavelet processing have been reported, showing significant improvements in classification performance for different kinds of signals. However, for speech signals, the problem of finding a convenient wavelet-based representation is still an open challenge. This study proposes the use of a multi-objective genetic algorithm for the optimisation of a wavelet-based representation of speech. The most relevant features are selected from a complete wavelet packet decomposition in order to maximise phoneme classification performance. Classification results for English phonemes, in different noise conditions, show significant improvements compared with well-known speech representations. Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; Argentina Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina |
description |
State-of-the-art speech representations provide acceptable recognition results under optimal conditions, though their performance in adverse conditions still needs to be improved. In this direction, many advances involving wavelet processing have been reported, showing significant improvements in classification performance for different kinds of signals. However, for speech signals, the problem of finding a convenient wavelet-based representation is still an open challenge. This study proposes the use of a multi-objective genetic algorithm for the optimisation of a wavelet-based representation of speech. The most relevant features are selected from a complete wavelet packet decomposition in order to maximise phoneme classification performance. Classification results for English phonemes, in different noise conditions, show significant improvements compared with well-known speech representations. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/47801 Vignolo, Leandro Daniel; Rufiner, Hugo Leonardo; Milone, Diego Humberto; Multi-objective optimisation of wavelet features for phoneme recognition; Institution of Engineering and Technology; Iet Signal Processing; 10; 6; 3-2016; 685-694 1751-9675 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/47801 |
identifier_str_mv |
Vignolo, Leandro Daniel; Rufiner, Hugo Leonardo; Milone, Diego Humberto; Multi-objective optimisation of wavelet features for phoneme recognition; Institution of Engineering and Technology; Iet Signal Processing; 10; 6; 3-2016; 685-694 1751-9675 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1049/iet-spr.2015.0568 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institution of Engineering and Technology |
publisher.none.fl_str_mv |
Institution of Engineering and Technology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613458329337856 |
score |
13.070432 |