Order reduction in time integration caused by velocity projection
- Autores
- Arnold, Martín Alejandro; Cardona, Alberto; Brüls, Olivier
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Holonomic constraints restrict the configuration of a multibody system to a subset of the configuration space. They imply so called hidden constraints at the level of velocity coordinates that may formally be obtained from time derivatives of the original holonomic constraints. A numerical solution that satisfies hidden constraints as well as the original constraint equations may be obtained considering both types of constraints simultaneously in each time step (Stabilized index-2 formulation) or using projection techniques. Both approaches are well established in the time integration of differential-algebraic equations. Recently, we have introduced a generalized-α Lie group time integration method for the stabilized index-2 formulation that achieves second order convergence for all solution components. In the present paper, we show that a separate velocity projection would be less favourable since it may result in an order reduction and in large transient errors after each projection step. This undesired numerical behaviour is analysed by a one-step error recursion that considers the coupled error propagation in differential and algebraic solution components. This one-step error recursion has been used before to prove second order convergence for the application of generalized-α methods to constrained systems.
Fil: Arnold, Martín Alejandro. Martin Luther University; Alemania
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Brüls, Olivier. Université de Liège; Bélgica - Materia
-
Generalized-Α Method
Lie Group Time Integration
Velocity Projection - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/39529
Ver los metadatos del registro completo
id |
CONICETDig_394fa2fc7bd8c459c54d8ae802433766 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/39529 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Order reduction in time integration caused by velocity projectionArnold, Martín AlejandroCardona, AlbertoBrüls, OlivierGeneralized-Α MethodLie Group Time IntegrationVelocity Projectionhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Holonomic constraints restrict the configuration of a multibody system to a subset of the configuration space. They imply so called hidden constraints at the level of velocity coordinates that may formally be obtained from time derivatives of the original holonomic constraints. A numerical solution that satisfies hidden constraints as well as the original constraint equations may be obtained considering both types of constraints simultaneously in each time step (Stabilized index-2 formulation) or using projection techniques. Both approaches are well established in the time integration of differential-algebraic equations. Recently, we have introduced a generalized-α Lie group time integration method for the stabilized index-2 formulation that achieves second order convergence for all solution components. In the present paper, we show that a separate velocity projection would be less favourable since it may result in an order reduction and in large transient errors after each projection step. This undesired numerical behaviour is analysed by a one-step error recursion that considers the coupled error propagation in differential and algebraic solution components. This one-step error recursion has been used before to prove second order convergence for the application of generalized-α methods to constrained systems.Fil: Arnold, Martín Alejandro. Martin Luther University; AlemaniaFil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Brüls, Olivier. Université de Liège; BélgicaKorean Soc Mechanical Engineers2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/39529Arnold, Martín Alejandro; Cardona, Alberto; Brüls, Olivier; Order reduction in time integration caused by velocity projection; Korean Soc Mechanical Engineers; Journal of Mechanical Science and Technology; 29; 7; 7-2015; 2579-25851738-494X1976-3824CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s12206-015-0501-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs12206-015-0501-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:55Zoai:ri.conicet.gov.ar:11336/39529instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:55.913CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Order reduction in time integration caused by velocity projection |
title |
Order reduction in time integration caused by velocity projection |
spellingShingle |
Order reduction in time integration caused by velocity projection Arnold, Martín Alejandro Generalized-Α Method Lie Group Time Integration Velocity Projection |
title_short |
Order reduction in time integration caused by velocity projection |
title_full |
Order reduction in time integration caused by velocity projection |
title_fullStr |
Order reduction in time integration caused by velocity projection |
title_full_unstemmed |
Order reduction in time integration caused by velocity projection |
title_sort |
Order reduction in time integration caused by velocity projection |
dc.creator.none.fl_str_mv |
Arnold, Martín Alejandro Cardona, Alberto Brüls, Olivier |
author |
Arnold, Martín Alejandro |
author_facet |
Arnold, Martín Alejandro Cardona, Alberto Brüls, Olivier |
author_role |
author |
author2 |
Cardona, Alberto Brüls, Olivier |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Generalized-Α Method Lie Group Time Integration Velocity Projection |
topic |
Generalized-Α Method Lie Group Time Integration Velocity Projection |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Holonomic constraints restrict the configuration of a multibody system to a subset of the configuration space. They imply so called hidden constraints at the level of velocity coordinates that may formally be obtained from time derivatives of the original holonomic constraints. A numerical solution that satisfies hidden constraints as well as the original constraint equations may be obtained considering both types of constraints simultaneously in each time step (Stabilized index-2 formulation) or using projection techniques. Both approaches are well established in the time integration of differential-algebraic equations. Recently, we have introduced a generalized-α Lie group time integration method for the stabilized index-2 formulation that achieves second order convergence for all solution components. In the present paper, we show that a separate velocity projection would be less favourable since it may result in an order reduction and in large transient errors after each projection step. This undesired numerical behaviour is analysed by a one-step error recursion that considers the coupled error propagation in differential and algebraic solution components. This one-step error recursion has been used before to prove second order convergence for the application of generalized-α methods to constrained systems. Fil: Arnold, Martín Alejandro. Martin Luther University; Alemania Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Brüls, Olivier. Université de Liège; Bélgica |
description |
Holonomic constraints restrict the configuration of a multibody system to a subset of the configuration space. They imply so called hidden constraints at the level of velocity coordinates that may formally be obtained from time derivatives of the original holonomic constraints. A numerical solution that satisfies hidden constraints as well as the original constraint equations may be obtained considering both types of constraints simultaneously in each time step (Stabilized index-2 formulation) or using projection techniques. Both approaches are well established in the time integration of differential-algebraic equations. Recently, we have introduced a generalized-α Lie group time integration method for the stabilized index-2 formulation that achieves second order convergence for all solution components. In the present paper, we show that a separate velocity projection would be less favourable since it may result in an order reduction and in large transient errors after each projection step. This undesired numerical behaviour is analysed by a one-step error recursion that considers the coupled error propagation in differential and algebraic solution components. This one-step error recursion has been used before to prove second order convergence for the application of generalized-α methods to constrained systems. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/39529 Arnold, Martín Alejandro; Cardona, Alberto; Brüls, Olivier; Order reduction in time integration caused by velocity projection; Korean Soc Mechanical Engineers; Journal of Mechanical Science and Technology; 29; 7; 7-2015; 2579-2585 1738-494X 1976-3824 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/39529 |
identifier_str_mv |
Arnold, Martín Alejandro; Cardona, Alberto; Brüls, Olivier; Order reduction in time integration caused by velocity projection; Korean Soc Mechanical Engineers; Journal of Mechanical Science and Technology; 29; 7; 7-2015; 2579-2585 1738-494X 1976-3824 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s12206-015-0501-7 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs12206-015-0501-7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Korean Soc Mechanical Engineers |
publisher.none.fl_str_mv |
Korean Soc Mechanical Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614061774340096 |
score |
13.070432 |