Order reduction in time integration caused by velocity projection

Autores
Arnold, Martín Alejandro; Cardona, Alberto; Brüls, Olivier
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Holonomic constraints restrict the configuration of a multibody system to a subset of the configuration space. They imply so called hidden constraints at the level of velocity coordinates that may formally be obtained from time derivatives of the original holonomic constraints. A numerical solution that satisfies hidden constraints as well as the original constraint equations may be obtained considering both types of constraints simultaneously in each time step (Stabilized index-2 formulation) or using projection techniques. Both approaches are well established in the time integration of differential-algebraic equations. Recently, we have introduced a generalized-α Lie group time integration method for the stabilized index-2 formulation that achieves second order convergence for all solution components. In the present paper, we show that a separate velocity projection would be less favourable since it may result in an order reduction and in large transient errors after each projection step. This undesired numerical behaviour is analysed by a one-step error recursion that considers the coupled error propagation in differential and algebraic solution components. This one-step error recursion has been used before to prove second order convergence for the application of generalized-α methods to constrained systems.
Fil: Arnold, Martín Alejandro. Martin Luther University; Alemania
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Brüls, Olivier. Université de Liège; Bélgica
Materia
Generalized-Α Method
Lie Group Time Integration
Velocity Projection
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/39529

id CONICETDig_394fa2fc7bd8c459c54d8ae802433766
oai_identifier_str oai:ri.conicet.gov.ar:11336/39529
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Order reduction in time integration caused by velocity projectionArnold, Martín AlejandroCardona, AlbertoBrüls, OlivierGeneralized-Α MethodLie Group Time IntegrationVelocity Projectionhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Holonomic constraints restrict the configuration of a multibody system to a subset of the configuration space. They imply so called hidden constraints at the level of velocity coordinates that may formally be obtained from time derivatives of the original holonomic constraints. A numerical solution that satisfies hidden constraints as well as the original constraint equations may be obtained considering both types of constraints simultaneously in each time step (Stabilized index-2 formulation) or using projection techniques. Both approaches are well established in the time integration of differential-algebraic equations. Recently, we have introduced a generalized-α Lie group time integration method for the stabilized index-2 formulation that achieves second order convergence for all solution components. In the present paper, we show that a separate velocity projection would be less favourable since it may result in an order reduction and in large transient errors after each projection step. This undesired numerical behaviour is analysed by a one-step error recursion that considers the coupled error propagation in differential and algebraic solution components. This one-step error recursion has been used before to prove second order convergence for the application of generalized-α methods to constrained systems.Fil: Arnold, Martín Alejandro. Martin Luther University; AlemaniaFil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Brüls, Olivier. Université de Liège; BélgicaKorean Soc Mechanical Engineers2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/39529Arnold, Martín Alejandro; Cardona, Alberto; Brüls, Olivier; Order reduction in time integration caused by velocity projection; Korean Soc Mechanical Engineers; Journal of Mechanical Science and Technology; 29; 7; 7-2015; 2579-25851738-494X1976-3824CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s12206-015-0501-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs12206-015-0501-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:55Zoai:ri.conicet.gov.ar:11336/39529instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:55.913CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Order reduction in time integration caused by velocity projection
title Order reduction in time integration caused by velocity projection
spellingShingle Order reduction in time integration caused by velocity projection
Arnold, Martín Alejandro
Generalized-Α Method
Lie Group Time Integration
Velocity Projection
title_short Order reduction in time integration caused by velocity projection
title_full Order reduction in time integration caused by velocity projection
title_fullStr Order reduction in time integration caused by velocity projection
title_full_unstemmed Order reduction in time integration caused by velocity projection
title_sort Order reduction in time integration caused by velocity projection
dc.creator.none.fl_str_mv Arnold, Martín Alejandro
Cardona, Alberto
Brüls, Olivier
author Arnold, Martín Alejandro
author_facet Arnold, Martín Alejandro
Cardona, Alberto
Brüls, Olivier
author_role author
author2 Cardona, Alberto
Brüls, Olivier
author2_role author
author
dc.subject.none.fl_str_mv Generalized-Α Method
Lie Group Time Integration
Velocity Projection
topic Generalized-Α Method
Lie Group Time Integration
Velocity Projection
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Holonomic constraints restrict the configuration of a multibody system to a subset of the configuration space. They imply so called hidden constraints at the level of velocity coordinates that may formally be obtained from time derivatives of the original holonomic constraints. A numerical solution that satisfies hidden constraints as well as the original constraint equations may be obtained considering both types of constraints simultaneously in each time step (Stabilized index-2 formulation) or using projection techniques. Both approaches are well established in the time integration of differential-algebraic equations. Recently, we have introduced a generalized-α Lie group time integration method for the stabilized index-2 formulation that achieves second order convergence for all solution components. In the present paper, we show that a separate velocity projection would be less favourable since it may result in an order reduction and in large transient errors after each projection step. This undesired numerical behaviour is analysed by a one-step error recursion that considers the coupled error propagation in differential and algebraic solution components. This one-step error recursion has been used before to prove second order convergence for the application of generalized-α methods to constrained systems.
Fil: Arnold, Martín Alejandro. Martin Luther University; Alemania
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Brüls, Olivier. Université de Liège; Bélgica
description Holonomic constraints restrict the configuration of a multibody system to a subset of the configuration space. They imply so called hidden constraints at the level of velocity coordinates that may formally be obtained from time derivatives of the original holonomic constraints. A numerical solution that satisfies hidden constraints as well as the original constraint equations may be obtained considering both types of constraints simultaneously in each time step (Stabilized index-2 formulation) or using projection techniques. Both approaches are well established in the time integration of differential-algebraic equations. Recently, we have introduced a generalized-α Lie group time integration method for the stabilized index-2 formulation that achieves second order convergence for all solution components. In the present paper, we show that a separate velocity projection would be less favourable since it may result in an order reduction and in large transient errors after each projection step. This undesired numerical behaviour is analysed by a one-step error recursion that considers the coupled error propagation in differential and algebraic solution components. This one-step error recursion has been used before to prove second order convergence for the application of generalized-α methods to constrained systems.
publishDate 2015
dc.date.none.fl_str_mv 2015-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/39529
Arnold, Martín Alejandro; Cardona, Alberto; Brüls, Olivier; Order reduction in time integration caused by velocity projection; Korean Soc Mechanical Engineers; Journal of Mechanical Science and Technology; 29; 7; 7-2015; 2579-2585
1738-494X
1976-3824
CONICET Digital
CONICET
url http://hdl.handle.net/11336/39529
identifier_str_mv Arnold, Martín Alejandro; Cardona, Alberto; Brüls, Olivier; Order reduction in time integration caused by velocity projection; Korean Soc Mechanical Engineers; Journal of Mechanical Science and Technology; 29; 7; 7-2015; 2579-2585
1738-494X
1976-3824
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s12206-015-0501-7
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs12206-015-0501-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Korean Soc Mechanical Engineers
publisher.none.fl_str_mv Korean Soc Mechanical Engineers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614061774340096
score 13.070432