Superconvergence for finite element approximation of a convection-diffusion equation using graded meshes
- Autores
- Durán, Rodrigo Gonzalo; Lombardi, Ariel Luis; Prieto, Mariana Ines
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we analyse the approximation of a model convection-diffusion equation by standard bilinear finite elements using the graded meshes introduced in Durán & Lombardi (2006, Finite element approximation of convection-diffusion problems using graded meshes. Appl. Numer. Math., 56, 1314-1325). Our main goal is to prove superconvergence results of the type known for standard elliptic problems, namely, that the difference between the finite element solution and the Lagrange interpolation of the exact solution, in the ε-weighted H 1-norm, is of higher order than the error itself. The constant in our estimate depends only weakly on the singular perturbation parameter. As a consequence of the superconvergence result we obtain optimal order error estimates in the L 2-norm. Also we show how to obtain a higher order approximation by a local postprocessing of the computed solution.
Fil: Durán, Rodrigo Gonzalo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Lombardi, Ariel Luis. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Prieto, Mariana Ines. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
CONVECTION-DIFFUSION
GRADED MESHES
SUPERCONVERGENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/113340
Ver los metadatos del registro completo
| id |
CONICETDig_095e77277896760d56689fce89afa05d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/113340 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Superconvergence for finite element approximation of a convection-diffusion equation using graded meshesDurán, Rodrigo GonzaloLombardi, Ariel LuisPrieto, Mariana InesCONVECTION-DIFFUSIONGRADED MESHESSUPERCONVERGENCEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we analyse the approximation of a model convection-diffusion equation by standard bilinear finite elements using the graded meshes introduced in Durán & Lombardi (2006, Finite element approximation of convection-diffusion problems using graded meshes. Appl. Numer. Math., 56, 1314-1325). Our main goal is to prove superconvergence results of the type known for standard elliptic problems, namely, that the difference between the finite element solution and the Lagrange interpolation of the exact solution, in the ε-weighted H 1-norm, is of higher order than the error itself. The constant in our estimate depends only weakly on the singular perturbation parameter. As a consequence of the superconvergence result we obtain optimal order error estimates in the L 2-norm. Also we show how to obtain a higher order approximation by a local postprocessing of the computed solution.Fil: Durán, Rodrigo Gonzalo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Lombardi, Ariel Luis. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Prieto, Mariana Ines. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaOxford University Press2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113340Durán, Rodrigo Gonzalo; Lombardi, Ariel Luis; Prieto, Mariana Ines; Superconvergence for finite element approximation of a convection-diffusion equation using graded meshes; Oxford University Press; Ima Journal Of Numerical Analysis; 32; 2; 4-2012; 511-5330272-4979CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imajna/article-abstract/32/2/511/752114?redirectedFrom=fulltextinfo:eu-repo/semantics/altIdentifier/doi/10.1093/imanum/drr005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:02:38Zoai:ri.conicet.gov.ar:11336/113340instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:02:38.613CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Superconvergence for finite element approximation of a convection-diffusion equation using graded meshes |
| title |
Superconvergence for finite element approximation of a convection-diffusion equation using graded meshes |
| spellingShingle |
Superconvergence for finite element approximation of a convection-diffusion equation using graded meshes Durán, Rodrigo Gonzalo CONVECTION-DIFFUSION GRADED MESHES SUPERCONVERGENCE |
| title_short |
Superconvergence for finite element approximation of a convection-diffusion equation using graded meshes |
| title_full |
Superconvergence for finite element approximation of a convection-diffusion equation using graded meshes |
| title_fullStr |
Superconvergence for finite element approximation of a convection-diffusion equation using graded meshes |
| title_full_unstemmed |
Superconvergence for finite element approximation of a convection-diffusion equation using graded meshes |
| title_sort |
Superconvergence for finite element approximation of a convection-diffusion equation using graded meshes |
| dc.creator.none.fl_str_mv |
Durán, Rodrigo Gonzalo Lombardi, Ariel Luis Prieto, Mariana Ines |
| author |
Durán, Rodrigo Gonzalo |
| author_facet |
Durán, Rodrigo Gonzalo Lombardi, Ariel Luis Prieto, Mariana Ines |
| author_role |
author |
| author2 |
Lombardi, Ariel Luis Prieto, Mariana Ines |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
CONVECTION-DIFFUSION GRADED MESHES SUPERCONVERGENCE |
| topic |
CONVECTION-DIFFUSION GRADED MESHES SUPERCONVERGENCE |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this paper we analyse the approximation of a model convection-diffusion equation by standard bilinear finite elements using the graded meshes introduced in Durán & Lombardi (2006, Finite element approximation of convection-diffusion problems using graded meshes. Appl. Numer. Math., 56, 1314-1325). Our main goal is to prove superconvergence results of the type known for standard elliptic problems, namely, that the difference between the finite element solution and the Lagrange interpolation of the exact solution, in the ε-weighted H 1-norm, is of higher order than the error itself. The constant in our estimate depends only weakly on the singular perturbation parameter. As a consequence of the superconvergence result we obtain optimal order error estimates in the L 2-norm. Also we show how to obtain a higher order approximation by a local postprocessing of the computed solution. Fil: Durán, Rodrigo Gonzalo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Lombardi, Ariel Luis. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Prieto, Mariana Ines. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
| description |
In this paper we analyse the approximation of a model convection-diffusion equation by standard bilinear finite elements using the graded meshes introduced in Durán & Lombardi (2006, Finite element approximation of convection-diffusion problems using graded meshes. Appl. Numer. Math., 56, 1314-1325). Our main goal is to prove superconvergence results of the type known for standard elliptic problems, namely, that the difference between the finite element solution and the Lagrange interpolation of the exact solution, in the ε-weighted H 1-norm, is of higher order than the error itself. The constant in our estimate depends only weakly on the singular perturbation parameter. As a consequence of the superconvergence result we obtain optimal order error estimates in the L 2-norm. Also we show how to obtain a higher order approximation by a local postprocessing of the computed solution. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/113340 Durán, Rodrigo Gonzalo; Lombardi, Ariel Luis; Prieto, Mariana Ines; Superconvergence for finite element approximation of a convection-diffusion equation using graded meshes; Oxford University Press; Ima Journal Of Numerical Analysis; 32; 2; 4-2012; 511-533 0272-4979 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/113340 |
| identifier_str_mv |
Durán, Rodrigo Gonzalo; Lombardi, Ariel Luis; Prieto, Mariana Ines; Superconvergence for finite element approximation of a convection-diffusion equation using graded meshes; Oxford University Press; Ima Journal Of Numerical Analysis; 32; 2; 4-2012; 511-533 0272-4979 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imajna/article-abstract/32/2/511/752114?redirectedFrom=fulltext info:eu-repo/semantics/altIdentifier/doi/10.1093/imanum/drr005 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Oxford University Press |
| publisher.none.fl_str_mv |
Oxford University Press |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781239363633152 |
| score |
12.982451 |