An anisotropic a priori error analysis for a convection-dominated diffusion problem using the HDG method
- Autores
- Bustinza, Rommel; Lombardi, Ariel Luis; Solano, Manuel
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper deals with the a priori error analysis for a convection-dominated diffusion 2D problem, when applying the HDG method on a family of anisotropic triangulations. It is known that in this case, boundary or interior layers may appear. Therefore, it is important to resolve these layers in order to recover, if possible, the expected order of approximation. In this work, we extend the use of HDG method on anisotropic meshes. To this end, some assumptions need to be asked to the stabilization parameter, as well as to the family of triangulations. In this context, when the discrete local spaces are polynomials of degree k ≥ 0, this approach is able to recover an order of convergence k + 1 2 in L 2 for all the variables. Numerical examples confirm our theoretical results.
Fil: Bustinza, Rommel. Universidad de Concepción; Chile
Fil: Lombardi, Ariel Luis. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Solano, Manuel. Universidad de Concepción; Chile - Materia
-
ANISOTROPIC MESHES
CONVECTION-DOMINATED DIFFUSION PROBLEM
HYBRIDIZABLE DISCONTINUOUS GALERKIN - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/154240
Ver los metadatos del registro completo
id |
CONICETDig_019df09885257b24a84caa9cdd90c88d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/154240 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An anisotropic a priori error analysis for a convection-dominated diffusion problem using the HDG methodBustinza, RommelLombardi, Ariel LuisSolano, ManuelANISOTROPIC MESHESCONVECTION-DOMINATED DIFFUSION PROBLEMHYBRIDIZABLE DISCONTINUOUS GALERKINhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper deals with the a priori error analysis for a convection-dominated diffusion 2D problem, when applying the HDG method on a family of anisotropic triangulations. It is known that in this case, boundary or interior layers may appear. Therefore, it is important to resolve these layers in order to recover, if possible, the expected order of approximation. In this work, we extend the use of HDG method on anisotropic meshes. To this end, some assumptions need to be asked to the stabilization parameter, as well as to the family of triangulations. In this context, when the discrete local spaces are polynomials of degree k ≥ 0, this approach is able to recover an order of convergence k + 1 2 in L 2 for all the variables. Numerical examples confirm our theoretical results.Fil: Bustinza, Rommel. Universidad de Concepción; ChileFil: Lombardi, Ariel Luis. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Solano, Manuel. Universidad de Concepción; ChileElsevier Science SA2019-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/154240Bustinza, Rommel; Lombardi, Ariel Luis; Solano, Manuel; An anisotropic a priori error analysis for a convection-dominated diffusion problem using the HDG method; Elsevier Science SA; Computer Methods in Applied Mechanics and Engineering; 345; 1-3-2019; 382-4010045-78251879-2138CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0045782518305656info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2018.11.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:25:54Zoai:ri.conicet.gov.ar:11336/154240instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:25:54.612CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An anisotropic a priori error analysis for a convection-dominated diffusion problem using the HDG method |
title |
An anisotropic a priori error analysis for a convection-dominated diffusion problem using the HDG method |
spellingShingle |
An anisotropic a priori error analysis for a convection-dominated diffusion problem using the HDG method Bustinza, Rommel ANISOTROPIC MESHES CONVECTION-DOMINATED DIFFUSION PROBLEM HYBRIDIZABLE DISCONTINUOUS GALERKIN |
title_short |
An anisotropic a priori error analysis for a convection-dominated diffusion problem using the HDG method |
title_full |
An anisotropic a priori error analysis for a convection-dominated diffusion problem using the HDG method |
title_fullStr |
An anisotropic a priori error analysis for a convection-dominated diffusion problem using the HDG method |
title_full_unstemmed |
An anisotropic a priori error analysis for a convection-dominated diffusion problem using the HDG method |
title_sort |
An anisotropic a priori error analysis for a convection-dominated diffusion problem using the HDG method |
dc.creator.none.fl_str_mv |
Bustinza, Rommel Lombardi, Ariel Luis Solano, Manuel |
author |
Bustinza, Rommel |
author_facet |
Bustinza, Rommel Lombardi, Ariel Luis Solano, Manuel |
author_role |
author |
author2 |
Lombardi, Ariel Luis Solano, Manuel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ANISOTROPIC MESHES CONVECTION-DOMINATED DIFFUSION PROBLEM HYBRIDIZABLE DISCONTINUOUS GALERKIN |
topic |
ANISOTROPIC MESHES CONVECTION-DOMINATED DIFFUSION PROBLEM HYBRIDIZABLE DISCONTINUOUS GALERKIN |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper deals with the a priori error analysis for a convection-dominated diffusion 2D problem, when applying the HDG method on a family of anisotropic triangulations. It is known that in this case, boundary or interior layers may appear. Therefore, it is important to resolve these layers in order to recover, if possible, the expected order of approximation. In this work, we extend the use of HDG method on anisotropic meshes. To this end, some assumptions need to be asked to the stabilization parameter, as well as to the family of triangulations. In this context, when the discrete local spaces are polynomials of degree k ≥ 0, this approach is able to recover an order of convergence k + 1 2 in L 2 for all the variables. Numerical examples confirm our theoretical results. Fil: Bustinza, Rommel. Universidad de Concepción; Chile Fil: Lombardi, Ariel Luis. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina Fil: Solano, Manuel. Universidad de Concepción; Chile |
description |
This paper deals with the a priori error analysis for a convection-dominated diffusion 2D problem, when applying the HDG method on a family of anisotropic triangulations. It is known that in this case, boundary or interior layers may appear. Therefore, it is important to resolve these layers in order to recover, if possible, the expected order of approximation. In this work, we extend the use of HDG method on anisotropic meshes. To this end, some assumptions need to be asked to the stabilization parameter, as well as to the family of triangulations. In this context, when the discrete local spaces are polynomials of degree k ≥ 0, this approach is able to recover an order of convergence k + 1 2 in L 2 for all the variables. Numerical examples confirm our theoretical results. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/154240 Bustinza, Rommel; Lombardi, Ariel Luis; Solano, Manuel; An anisotropic a priori error analysis for a convection-dominated diffusion problem using the HDG method; Elsevier Science SA; Computer Methods in Applied Mechanics and Engineering; 345; 1-3-2019; 382-401 0045-7825 1879-2138 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/154240 |
identifier_str_mv |
Bustinza, Rommel; Lombardi, Ariel Luis; Solano, Manuel; An anisotropic a priori error analysis for a convection-dominated diffusion problem using the HDG method; Elsevier Science SA; Computer Methods in Applied Mechanics and Engineering; 345; 1-3-2019; 382-401 0045-7825 1879-2138 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0045782518305656 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2018.11.010 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science SA |
publisher.none.fl_str_mv |
Elsevier Science SA |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614258772410368 |
score |
13.070432 |