Superconvergence for rectangular mixed finite elements

Autores
Durán, Ricardo Guillermo
Año de publicación
1990
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we prove superconvergence error estimates for the vector variable for mixed finite element approximations of second order elliptic problems. For the rectangular finite elements of Raviart and Thomas and for those of Brezzi et al. we prove that the distance in L 2 between the approximate solution and a projection of the exact one is of higher order than the error itself. This result is exploited to obtain superconvergence at Gaussian points and to construct higher order approximations by a local postprocessing.
Departamento de Matemática
Materia
Matemática
Ciencias Exactas
Superconvergence
Rectangular finite elements
Gaussian points
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/145107

id SEDICI_8b720bde74501a9be75f98ee42184164
oai_identifier_str oai:sedici.unlp.edu.ar:10915/145107
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Superconvergence for rectangular mixed finite elementsDurán, Ricardo GuillermoMatemáticaCiencias ExactasSuperconvergenceRectangular finite elementsGaussian pointsIn this paper we prove superconvergence error estimates for the vector variable for mixed finite element approximations of second order elliptic problems. For the rectangular finite elements of Raviart and Thomas and for those of Brezzi et al. we prove that the distance in L 2 between the approximate solution and a projection of the exact one is of higher order than the error itself. This result is exploited to obtain superconvergence at Gaussian points and to construct higher order approximations by a local postprocessing.Departamento de Matemática1990info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf287-298http://sedici.unlp.edu.ar/handle/10915/145107enginfo:eu-repo/semantics/altIdentifier/issn/0029-599xinfo:eu-repo/semantics/altIdentifier/issn/0945-3245info:eu-repo/semantics/altIdentifier/doi/10.1007/bf01385626info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:13:12Zoai:sedici.unlp.edu.ar:10915/145107Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:13:12.444SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Superconvergence for rectangular mixed finite elements
title Superconvergence for rectangular mixed finite elements
spellingShingle Superconvergence for rectangular mixed finite elements
Durán, Ricardo Guillermo
Matemática
Ciencias Exactas
Superconvergence
Rectangular finite elements
Gaussian points
title_short Superconvergence for rectangular mixed finite elements
title_full Superconvergence for rectangular mixed finite elements
title_fullStr Superconvergence for rectangular mixed finite elements
title_full_unstemmed Superconvergence for rectangular mixed finite elements
title_sort Superconvergence for rectangular mixed finite elements
dc.creator.none.fl_str_mv Durán, Ricardo Guillermo
author Durán, Ricardo Guillermo
author_facet Durán, Ricardo Guillermo
author_role author
dc.subject.none.fl_str_mv Matemática
Ciencias Exactas
Superconvergence
Rectangular finite elements
Gaussian points
topic Matemática
Ciencias Exactas
Superconvergence
Rectangular finite elements
Gaussian points
dc.description.none.fl_txt_mv In this paper we prove superconvergence error estimates for the vector variable for mixed finite element approximations of second order elliptic problems. For the rectangular finite elements of Raviart and Thomas and for those of Brezzi et al. we prove that the distance in L 2 between the approximate solution and a projection of the exact one is of higher order than the error itself. This result is exploited to obtain superconvergence at Gaussian points and to construct higher order approximations by a local postprocessing.
Departamento de Matemática
description In this paper we prove superconvergence error estimates for the vector variable for mixed finite element approximations of second order elliptic problems. For the rectangular finite elements of Raviart and Thomas and for those of Brezzi et al. we prove that the distance in L 2 between the approximate solution and a projection of the exact one is of higher order than the error itself. This result is exploited to obtain superconvergence at Gaussian points and to construct higher order approximations by a local postprocessing.
publishDate 1990
dc.date.none.fl_str_mv 1990
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/145107
url http://sedici.unlp.edu.ar/handle/10915/145107
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0029-599x
info:eu-repo/semantics/altIdentifier/issn/0945-3245
info:eu-repo/semantics/altIdentifier/doi/10.1007/bf01385626
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
287-298
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783500688031744
score 12.982451