Superconvergence for rectangular mixed finite elements
- Autores
- Durán, Ricardo Guillermo
- Año de publicación
- 1990
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we prove superconvergence error estimates for the vector variable for mixed finite element approximations of second order elliptic problems. For the rectangular finite elements of Raviart and Thomas and for those of Brezzi et al. we prove that the distance in L 2 between the approximate solution and a projection of the exact one is of higher order than the error itself. This result is exploited to obtain superconvergence at Gaussian points and to construct higher order approximations by a local postprocessing.
Departamento de Matemática - Materia
-
Matemática
Ciencias Exactas
Superconvergence
Rectangular finite elements
Gaussian points - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/145107
Ver los metadatos del registro completo
| id |
SEDICI_8b720bde74501a9be75f98ee42184164 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/145107 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Superconvergence for rectangular mixed finite elementsDurán, Ricardo GuillermoMatemáticaCiencias ExactasSuperconvergenceRectangular finite elementsGaussian pointsIn this paper we prove superconvergence error estimates for the vector variable for mixed finite element approximations of second order elliptic problems. For the rectangular finite elements of Raviart and Thomas and for those of Brezzi et al. we prove that the distance in L 2 between the approximate solution and a projection of the exact one is of higher order than the error itself. This result is exploited to obtain superconvergence at Gaussian points and to construct higher order approximations by a local postprocessing.Departamento de Matemática1990info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf287-298http://sedici.unlp.edu.ar/handle/10915/145107enginfo:eu-repo/semantics/altIdentifier/issn/0029-599xinfo:eu-repo/semantics/altIdentifier/issn/0945-3245info:eu-repo/semantics/altIdentifier/doi/10.1007/bf01385626info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:13:12Zoai:sedici.unlp.edu.ar:10915/145107Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:13:12.444SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Superconvergence for rectangular mixed finite elements |
| title |
Superconvergence for rectangular mixed finite elements |
| spellingShingle |
Superconvergence for rectangular mixed finite elements Durán, Ricardo Guillermo Matemática Ciencias Exactas Superconvergence Rectangular finite elements Gaussian points |
| title_short |
Superconvergence for rectangular mixed finite elements |
| title_full |
Superconvergence for rectangular mixed finite elements |
| title_fullStr |
Superconvergence for rectangular mixed finite elements |
| title_full_unstemmed |
Superconvergence for rectangular mixed finite elements |
| title_sort |
Superconvergence for rectangular mixed finite elements |
| dc.creator.none.fl_str_mv |
Durán, Ricardo Guillermo |
| author |
Durán, Ricardo Guillermo |
| author_facet |
Durán, Ricardo Guillermo |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Matemática Ciencias Exactas Superconvergence Rectangular finite elements Gaussian points |
| topic |
Matemática Ciencias Exactas Superconvergence Rectangular finite elements Gaussian points |
| dc.description.none.fl_txt_mv |
In this paper we prove superconvergence error estimates for the vector variable for mixed finite element approximations of second order elliptic problems. For the rectangular finite elements of Raviart and Thomas and for those of Brezzi et al. we prove that the distance in L 2 between the approximate solution and a projection of the exact one is of higher order than the error itself. This result is exploited to obtain superconvergence at Gaussian points and to construct higher order approximations by a local postprocessing. Departamento de Matemática |
| description |
In this paper we prove superconvergence error estimates for the vector variable for mixed finite element approximations of second order elliptic problems. For the rectangular finite elements of Raviart and Thomas and for those of Brezzi et al. we prove that the distance in L 2 between the approximate solution and a projection of the exact one is of higher order than the error itself. This result is exploited to obtain superconvergence at Gaussian points and to construct higher order approximations by a local postprocessing. |
| publishDate |
1990 |
| dc.date.none.fl_str_mv |
1990 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/145107 |
| url |
http://sedici.unlp.edu.ar/handle/10915/145107 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0029-599x info:eu-repo/semantics/altIdentifier/issn/0945-3245 info:eu-repo/semantics/altIdentifier/doi/10.1007/bf01385626 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 287-298 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783500688031744 |
| score |
12.982451 |