The Local Form of Doubly Stochastic Maps and Joint Majorization in II 1 Factors

Autores
Argerami, Martin; Massey, Pedro Gustavo
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We find a description of the restriction of doubly stochastic maps to separable abelian C ∗ -subalgebras of a II1 factor M. We use this local form of doubly stochastic maps to develop a notion of joint majorization between ntuples of mutually commuting self-adjoint operators that extends those of Kamei (for single self-adjoint operators) and Hiai (for single normal operators) in the II1 factor case. Several characterizations of this joint majorization are obtained. As a byproduct we prove that any separable abelian C ∗ -subalgebra of M can be embedded into a separable abelian C ∗ -subalgebra of M with diffuse spectral measure.
Fil: Argerami, Martin. University of Regina; Canadá
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
Materia
Joint Majorization
Doubly Stochastic Map
Convex Hull
Unitary Orbit
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19465

id CONICETDig_081a09d3c97bf88ee4f3f805eea8aad7
oai_identifier_str oai:ri.conicet.gov.ar:11336/19465
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The Local Form of Doubly Stochastic Maps and Joint Majorization in II 1 FactorsArgerami, MartinMassey, Pedro GustavoJoint MajorizationDoubly Stochastic MapConvex HullUnitary Orbithttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We find a description of the restriction of doubly stochastic maps to separable abelian C ∗ -subalgebras of a II1 factor M. We use this local form of doubly stochastic maps to develop a notion of joint majorization between ntuples of mutually commuting self-adjoint operators that extends those of Kamei (for single self-adjoint operators) and Hiai (for single normal operators) in the II1 factor case. Several characterizations of this joint majorization are obtained. As a byproduct we prove that any separable abelian C ∗ -subalgebra of M can be embedded into a separable abelian C ∗ -subalgebra of M with diffuse spectral measure.Fil: Argerami, Martin. University of Regina; CanadáFil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; ArgentinaBirkhauser Verlag Ag2008-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19465Argerami, Martin; Massey, Pedro Gustavo; The Local Form of Doubly Stochastic Maps and Joint Majorization in II 1 Factors; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 61; 1; 2-2008; 1-190378-620XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00020-008-1569-6info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0606060info:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-008-1569-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:27:20Zoai:ri.conicet.gov.ar:11336/19465instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:27:20.456CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The Local Form of Doubly Stochastic Maps and Joint Majorization in II 1 Factors
title The Local Form of Doubly Stochastic Maps and Joint Majorization in II 1 Factors
spellingShingle The Local Form of Doubly Stochastic Maps and Joint Majorization in II 1 Factors
Argerami, Martin
Joint Majorization
Doubly Stochastic Map
Convex Hull
Unitary Orbit
title_short The Local Form of Doubly Stochastic Maps and Joint Majorization in II 1 Factors
title_full The Local Form of Doubly Stochastic Maps and Joint Majorization in II 1 Factors
title_fullStr The Local Form of Doubly Stochastic Maps and Joint Majorization in II 1 Factors
title_full_unstemmed The Local Form of Doubly Stochastic Maps and Joint Majorization in II 1 Factors
title_sort The Local Form of Doubly Stochastic Maps and Joint Majorization in II 1 Factors
dc.creator.none.fl_str_mv Argerami, Martin
Massey, Pedro Gustavo
author Argerami, Martin
author_facet Argerami, Martin
Massey, Pedro Gustavo
author_role author
author2 Massey, Pedro Gustavo
author2_role author
dc.subject.none.fl_str_mv Joint Majorization
Doubly Stochastic Map
Convex Hull
Unitary Orbit
topic Joint Majorization
Doubly Stochastic Map
Convex Hull
Unitary Orbit
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We find a description of the restriction of doubly stochastic maps to separable abelian C ∗ -subalgebras of a II1 factor M. We use this local form of doubly stochastic maps to develop a notion of joint majorization between ntuples of mutually commuting self-adjoint operators that extends those of Kamei (for single self-adjoint operators) and Hiai (for single normal operators) in the II1 factor case. Several characterizations of this joint majorization are obtained. As a byproduct we prove that any separable abelian C ∗ -subalgebra of M can be embedded into a separable abelian C ∗ -subalgebra of M with diffuse spectral measure.
Fil: Argerami, Martin. University of Regina; Canadá
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
description We find a description of the restriction of doubly stochastic maps to separable abelian C ∗ -subalgebras of a II1 factor M. We use this local form of doubly stochastic maps to develop a notion of joint majorization between ntuples of mutually commuting self-adjoint operators that extends those of Kamei (for single self-adjoint operators) and Hiai (for single normal operators) in the II1 factor case. Several characterizations of this joint majorization are obtained. As a byproduct we prove that any separable abelian C ∗ -subalgebra of M can be embedded into a separable abelian C ∗ -subalgebra of M with diffuse spectral measure.
publishDate 2008
dc.date.none.fl_str_mv 2008-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19465
Argerami, Martin; Massey, Pedro Gustavo; The Local Form of Doubly Stochastic Maps and Joint Majorization in II 1 Factors; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 61; 1; 2-2008; 1-19
0378-620X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19465
identifier_str_mv Argerami, Martin; Massey, Pedro Gustavo; The Local Form of Doubly Stochastic Maps and Joint Majorization in II 1 Factors; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 61; 1; 2-2008; 1-19
0378-620X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00020-008-1569-6
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0606060
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-008-1569-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Birkhauser Verlag Ag
publisher.none.fl_str_mv Birkhauser Verlag Ag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083415496982528
score 13.22299