Jensen's inequality for spectral order and submajorization
- Autores
- Antezana, Jorge Abel; Massey, Pedro Gustavo; Stojanoff, Demetrio
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let A be a C*-algebra and φ{symbol} : A → L (H) be a positive unital map. Then, for a convex function f : I → R defined on some open interval and a self-adjoint element a ∈ A whose spectrum lies in I, we obtain a Jensen's-type inequality f (φ{symbol} (a)) ≤ φ{symbol} (f (a)) where ≤ denotes an operator preorder (usual order, spectral preorder, majorization) and depends on the class of convex functions considered, i.e., monotone convex or arbitrary convex functions. Some extensions of Jensen's-type inequalities to the multi-variable case are considered.
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina - Materia
-
CONVEX FUNCTIONS
JENSEN'S INEQUALITY
MAJORIZATION
POSITIVE MAPS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/99853
Ver los metadatos del registro completo
| id |
CONICETDig_91f42c334657b66d3714e23b8596d186 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/99853 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Jensen's inequality for spectral order and submajorizationAntezana, Jorge AbelMassey, Pedro GustavoStojanoff, DemetrioCONVEX FUNCTIONSJENSEN'S INEQUALITYMAJORIZATIONPOSITIVE MAPShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let A be a C*-algebra and φ{symbol} : A → L (H) be a positive unital map. Then, for a convex function f : I → R defined on some open interval and a self-adjoint element a ∈ A whose spectrum lies in I, we obtain a Jensen's-type inequality f (φ{symbol} (a)) ≤ φ{symbol} (f (a)) where ≤ denotes an operator preorder (usual order, spectral preorder, majorization) and depends on the class of convex functions considered, i.e., monotone convex or arbitrary convex functions. Some extensions of Jensen's-type inequalities to the multi-variable case are considered.Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaAcademic Press Inc Elsevier Science2007-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/99853Antezana, Jorge Abel; Massey, Pedro Gustavo; Stojanoff, Demetrio; Jensen's inequality for spectral order and submajorization; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 331; 1; 7-2007; 297-3070022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2006.08.029info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X06008870info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:56:04Zoai:ri.conicet.gov.ar:11336/99853instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:56:04.605CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Jensen's inequality for spectral order and submajorization |
| title |
Jensen's inequality for spectral order and submajorization |
| spellingShingle |
Jensen's inequality for spectral order and submajorization Antezana, Jorge Abel CONVEX FUNCTIONS JENSEN'S INEQUALITY MAJORIZATION POSITIVE MAPS |
| title_short |
Jensen's inequality for spectral order and submajorization |
| title_full |
Jensen's inequality for spectral order and submajorization |
| title_fullStr |
Jensen's inequality for spectral order and submajorization |
| title_full_unstemmed |
Jensen's inequality for spectral order and submajorization |
| title_sort |
Jensen's inequality for spectral order and submajorization |
| dc.creator.none.fl_str_mv |
Antezana, Jorge Abel Massey, Pedro Gustavo Stojanoff, Demetrio |
| author |
Antezana, Jorge Abel |
| author_facet |
Antezana, Jorge Abel Massey, Pedro Gustavo Stojanoff, Demetrio |
| author_role |
author |
| author2 |
Massey, Pedro Gustavo Stojanoff, Demetrio |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
CONVEX FUNCTIONS JENSEN'S INEQUALITY MAJORIZATION POSITIVE MAPS |
| topic |
CONVEX FUNCTIONS JENSEN'S INEQUALITY MAJORIZATION POSITIVE MAPS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let A be a C*-algebra and φ{symbol} : A → L (H) be a positive unital map. Then, for a convex function f : I → R defined on some open interval and a self-adjoint element a ∈ A whose spectrum lies in I, we obtain a Jensen's-type inequality f (φ{symbol} (a)) ≤ φ{symbol} (f (a)) where ≤ denotes an operator preorder (usual order, spectral preorder, majorization) and depends on the class of convex functions considered, i.e., monotone convex or arbitrary convex functions. Some extensions of Jensen's-type inequalities to the multi-variable case are considered. Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina |
| description |
Let A be a C*-algebra and φ{symbol} : A → L (H) be a positive unital map. Then, for a convex function f : I → R defined on some open interval and a self-adjoint element a ∈ A whose spectrum lies in I, we obtain a Jensen's-type inequality f (φ{symbol} (a)) ≤ φ{symbol} (f (a)) where ≤ denotes an operator preorder (usual order, spectral preorder, majorization) and depends on the class of convex functions considered, i.e., monotone convex or arbitrary convex functions. Some extensions of Jensen's-type inequalities to the multi-variable case are considered. |
| publishDate |
2007 |
| dc.date.none.fl_str_mv |
2007-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/99853 Antezana, Jorge Abel; Massey, Pedro Gustavo; Stojanoff, Demetrio; Jensen's inequality for spectral order and submajorization; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 331; 1; 7-2007; 297-307 0022-247X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/99853 |
| identifier_str_mv |
Antezana, Jorge Abel; Massey, Pedro Gustavo; Stojanoff, Demetrio; Jensen's inequality for spectral order and submajorization; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 331; 1; 7-2007; 297-307 0022-247X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2006.08.029 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X06008870 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598318239711232 |
| score |
13.137801 |