Eigenvalue problems in a non-Lipschitz domain
- Autores
- Acosta Rodriguez, Gabriel; Armentano, Maria Gabriela
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we analyse piecewise linear finite element approximations of the Laplace eigenvalue problem in the plane domain Ω = { (x,y) : 0 < x < 1 , 0 < y < xα}, which gives for 1<α the simplest model of an external cusp. Since Ω is curved and non-Lipschitz, the classical spectral theory cannot be applied directly. We present the eigenvalue problem in a proper setting, and relying on known convergence results for the associated source problem with α<3, we obtain a quasi-optimal order of convergence for the eigenpairs.
Fil: Acosta Rodriguez, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Armentano, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Cuspidal domains
Eigenvalue problems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/30519
Ver los metadatos del registro completo
id |
CONICETDig_d09603cb8ef4754b0eb9c1cd51799129 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/30519 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Eigenvalue problems in a non-Lipschitz domainAcosta Rodriguez, GabrielArmentano, Maria GabrielaCuspidal domainsEigenvalue problemshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we analyse piecewise linear finite element approximations of the Laplace eigenvalue problem in the plane domain Ω = { (x,y) : 0 < x < 1 , 0 < y < xα}, which gives for 1<α the simplest model of an external cusp. Since Ω is curved and non-Lipschitz, the classical spectral theory cannot be applied directly. We present the eigenvalue problem in a proper setting, and relying on known convergence results for the associated source problem with α<3, we obtain a quasi-optimal order of convergence for the eigenpairs.Fil: Acosta Rodriguez, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Armentano, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaOxford University Press2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/30519Acosta Rodriguez, Gabriel; Armentano, Maria Gabriela; Eigenvalue problems in a non-Lipschitz domain; Oxford University Press; Ima Journal Of Numerical Analysis; 34; 1; 5-2013; 83-950272-4979CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/imanum/drt012info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imajna/article-abstract/34/1/83/670573info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:28:33Zoai:ri.conicet.gov.ar:11336/30519instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:28:33.299CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Eigenvalue problems in a non-Lipschitz domain |
title |
Eigenvalue problems in a non-Lipschitz domain |
spellingShingle |
Eigenvalue problems in a non-Lipschitz domain Acosta Rodriguez, Gabriel Cuspidal domains Eigenvalue problems |
title_short |
Eigenvalue problems in a non-Lipschitz domain |
title_full |
Eigenvalue problems in a non-Lipschitz domain |
title_fullStr |
Eigenvalue problems in a non-Lipschitz domain |
title_full_unstemmed |
Eigenvalue problems in a non-Lipschitz domain |
title_sort |
Eigenvalue problems in a non-Lipschitz domain |
dc.creator.none.fl_str_mv |
Acosta Rodriguez, Gabriel Armentano, Maria Gabriela |
author |
Acosta Rodriguez, Gabriel |
author_facet |
Acosta Rodriguez, Gabriel Armentano, Maria Gabriela |
author_role |
author |
author2 |
Armentano, Maria Gabriela |
author2_role |
author |
dc.subject.none.fl_str_mv |
Cuspidal domains Eigenvalue problems |
topic |
Cuspidal domains Eigenvalue problems |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we analyse piecewise linear finite element approximations of the Laplace eigenvalue problem in the plane domain Ω = { (x,y) : 0 < x < 1 , 0 < y < xα}, which gives for 1<α the simplest model of an external cusp. Since Ω is curved and non-Lipschitz, the classical spectral theory cannot be applied directly. We present the eigenvalue problem in a proper setting, and relying on known convergence results for the associated source problem with α<3, we obtain a quasi-optimal order of convergence for the eigenpairs. Fil: Acosta Rodriguez, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Armentano, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
In this paper we analyse piecewise linear finite element approximations of the Laplace eigenvalue problem in the plane domain Ω = { (x,y) : 0 < x < 1 , 0 < y < xα}, which gives for 1<α the simplest model of an external cusp. Since Ω is curved and non-Lipschitz, the classical spectral theory cannot be applied directly. We present the eigenvalue problem in a proper setting, and relying on known convergence results for the associated source problem with α<3, we obtain a quasi-optimal order of convergence for the eigenpairs. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/30519 Acosta Rodriguez, Gabriel; Armentano, Maria Gabriela; Eigenvalue problems in a non-Lipschitz domain; Oxford University Press; Ima Journal Of Numerical Analysis; 34; 1; 5-2013; 83-95 0272-4979 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/30519 |
identifier_str_mv |
Acosta Rodriguez, Gabriel; Armentano, Maria Gabriela; Eigenvalue problems in a non-Lipschitz domain; Oxford University Press; Ima Journal Of Numerical Analysis; 34; 1; 5-2013; 83-95 0272-4979 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1093/imanum/drt012 info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imajna/article-abstract/34/1/83/670573 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614289633050624 |
score |
13.070432 |