Local Lidskii's theorems for unitarily invariant norms

Autores
Massey, Pedro Gustavo; Rios, Noelia Belén; Stojanoff, Demetrio
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Lidskii's additive inequalities (both for eigenvalues and singular values) can be interpreted as an explicit description of global minimizers of functions that are built on unitarily invariant norms, with domains consisting of certain orbits of matrices (under the action of the unitary group). In this paper, we show that Lidskii's inequalities actually describe all global minimizers of such functions and that local minimizers are also global minimizers. We use these results to obtain partial results related to local minimizers of generalized frame operator distances in the context of finite frame theory.
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Rios, Noelia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Materia
FRAME OPERATOR DISTANCE
LIDSKII'S INEQUALITY
MAJORIZATION
UNITARILY INVARIANT NORMS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/88407

id CONICETDig_0741f015c5880c641637fb59c26a3547
oai_identifier_str oai:ri.conicet.gov.ar:11336/88407
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Local Lidskii's theorems for unitarily invariant normsMassey, Pedro GustavoRios, Noelia BelénStojanoff, DemetrioFRAME OPERATOR DISTANCELIDSKII'S INEQUALITYMAJORIZATIONUNITARILY INVARIANT NORMShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Lidskii's additive inequalities (both for eigenvalues and singular values) can be interpreted as an explicit description of global minimizers of functions that are built on unitarily invariant norms, with domains consisting of certain orbits of matrices (under the action of the unitary group). In this paper, we show that Lidskii's inequalities actually describe all global minimizers of such functions and that local minimizers are also global minimizers. We use these results to obtain partial results related to local minimizers of generalized frame operator distances in the context of finite frame theory.Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Rios, Noelia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaElsevier Science Inc2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88407Massey, Pedro Gustavo; Rios, Noelia Belén; Stojanoff, Demetrio; Local Lidskii's theorems for unitarily invariant norms; Elsevier Science Inc; Linear Algebra and its Applications; 557; 11-2018; 34-610024-3795CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2018.07.022info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0024379518303501info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:16Zoai:ri.conicet.gov.ar:11336/88407instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:16.78CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Local Lidskii's theorems for unitarily invariant norms
title Local Lidskii's theorems for unitarily invariant norms
spellingShingle Local Lidskii's theorems for unitarily invariant norms
Massey, Pedro Gustavo
FRAME OPERATOR DISTANCE
LIDSKII'S INEQUALITY
MAJORIZATION
UNITARILY INVARIANT NORMS
title_short Local Lidskii's theorems for unitarily invariant norms
title_full Local Lidskii's theorems for unitarily invariant norms
title_fullStr Local Lidskii's theorems for unitarily invariant norms
title_full_unstemmed Local Lidskii's theorems for unitarily invariant norms
title_sort Local Lidskii's theorems for unitarily invariant norms
dc.creator.none.fl_str_mv Massey, Pedro Gustavo
Rios, Noelia Belén
Stojanoff, Demetrio
author Massey, Pedro Gustavo
author_facet Massey, Pedro Gustavo
Rios, Noelia Belén
Stojanoff, Demetrio
author_role author
author2 Rios, Noelia Belén
Stojanoff, Demetrio
author2_role author
author
dc.subject.none.fl_str_mv FRAME OPERATOR DISTANCE
LIDSKII'S INEQUALITY
MAJORIZATION
UNITARILY INVARIANT NORMS
topic FRAME OPERATOR DISTANCE
LIDSKII'S INEQUALITY
MAJORIZATION
UNITARILY INVARIANT NORMS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Lidskii's additive inequalities (both for eigenvalues and singular values) can be interpreted as an explicit description of global minimizers of functions that are built on unitarily invariant norms, with domains consisting of certain orbits of matrices (under the action of the unitary group). In this paper, we show that Lidskii's inequalities actually describe all global minimizers of such functions and that local minimizers are also global minimizers. We use these results to obtain partial results related to local minimizers of generalized frame operator distances in the context of finite frame theory.
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Rios, Noelia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
description Lidskii's additive inequalities (both for eigenvalues and singular values) can be interpreted as an explicit description of global minimizers of functions that are built on unitarily invariant norms, with domains consisting of certain orbits of matrices (under the action of the unitary group). In this paper, we show that Lidskii's inequalities actually describe all global minimizers of such functions and that local minimizers are also global minimizers. We use these results to obtain partial results related to local minimizers of generalized frame operator distances in the context of finite frame theory.
publishDate 2018
dc.date.none.fl_str_mv 2018-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/88407
Massey, Pedro Gustavo; Rios, Noelia Belén; Stojanoff, Demetrio; Local Lidskii's theorems for unitarily invariant norms; Elsevier Science Inc; Linear Algebra and its Applications; 557; 11-2018; 34-61
0024-3795
CONICET Digital
CONICET
url http://hdl.handle.net/11336/88407
identifier_str_mv Massey, Pedro Gustavo; Rios, Noelia Belén; Stojanoff, Demetrio; Local Lidskii's theorems for unitarily invariant norms; Elsevier Science Inc; Linear Algebra and its Applications; 557; 11-2018; 34-61
0024-3795
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2018.07.022
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0024379518303501
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Inc
publisher.none.fl_str_mv Elsevier Science Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269395312705536
score 13.13397