Local Lidskii's theorems for unitarily invariant norms
- Autores
- Massey, Pedro Gustavo; Rios, Noelia Belén; Stojanoff, Demetrio
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Lidskii's additive inequalities (both for eigenvalues and singular values) can be interpreted as an explicit description of global minimizers of functions that are built on unitarily invariant norms, with domains consisting of certain orbits of matrices (under the action of the unitary group). In this paper, we show that Lidskii's inequalities actually describe all global minimizers of such functions and that local minimizers are also global minimizers. We use these results to obtain partial results related to local minimizers of generalized frame operator distances in the context of finite frame theory.
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Rios, Noelia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina - Materia
-
FRAME OPERATOR DISTANCE
LIDSKII'S INEQUALITY
MAJORIZATION
UNITARILY INVARIANT NORMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88407
Ver los metadatos del registro completo
id |
CONICETDig_0741f015c5880c641637fb59c26a3547 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88407 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Local Lidskii's theorems for unitarily invariant normsMassey, Pedro GustavoRios, Noelia BelénStojanoff, DemetrioFRAME OPERATOR DISTANCELIDSKII'S INEQUALITYMAJORIZATIONUNITARILY INVARIANT NORMShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Lidskii's additive inequalities (both for eigenvalues and singular values) can be interpreted as an explicit description of global minimizers of functions that are built on unitarily invariant norms, with domains consisting of certain orbits of matrices (under the action of the unitary group). In this paper, we show that Lidskii's inequalities actually describe all global minimizers of such functions and that local minimizers are also global minimizers. We use these results to obtain partial results related to local minimizers of generalized frame operator distances in the context of finite frame theory.Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Rios, Noelia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaElsevier Science Inc2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88407Massey, Pedro Gustavo; Rios, Noelia Belén; Stojanoff, Demetrio; Local Lidskii's theorems for unitarily invariant norms; Elsevier Science Inc; Linear Algebra and its Applications; 557; 11-2018; 34-610024-3795CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2018.07.022info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0024379518303501info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:16Zoai:ri.conicet.gov.ar:11336/88407instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:16.78CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Local Lidskii's theorems for unitarily invariant norms |
title |
Local Lidskii's theorems for unitarily invariant norms |
spellingShingle |
Local Lidskii's theorems for unitarily invariant norms Massey, Pedro Gustavo FRAME OPERATOR DISTANCE LIDSKII'S INEQUALITY MAJORIZATION UNITARILY INVARIANT NORMS |
title_short |
Local Lidskii's theorems for unitarily invariant norms |
title_full |
Local Lidskii's theorems for unitarily invariant norms |
title_fullStr |
Local Lidskii's theorems for unitarily invariant norms |
title_full_unstemmed |
Local Lidskii's theorems for unitarily invariant norms |
title_sort |
Local Lidskii's theorems for unitarily invariant norms |
dc.creator.none.fl_str_mv |
Massey, Pedro Gustavo Rios, Noelia Belén Stojanoff, Demetrio |
author |
Massey, Pedro Gustavo |
author_facet |
Massey, Pedro Gustavo Rios, Noelia Belén Stojanoff, Demetrio |
author_role |
author |
author2 |
Rios, Noelia Belén Stojanoff, Demetrio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FRAME OPERATOR DISTANCE LIDSKII'S INEQUALITY MAJORIZATION UNITARILY INVARIANT NORMS |
topic |
FRAME OPERATOR DISTANCE LIDSKII'S INEQUALITY MAJORIZATION UNITARILY INVARIANT NORMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Lidskii's additive inequalities (both for eigenvalues and singular values) can be interpreted as an explicit description of global minimizers of functions that are built on unitarily invariant norms, with domains consisting of certain orbits of matrices (under the action of the unitary group). In this paper, we show that Lidskii's inequalities actually describe all global minimizers of such functions and that local minimizers are also global minimizers. We use these results to obtain partial results related to local minimizers of generalized frame operator distances in the context of finite frame theory. Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Rios, Noelia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina |
description |
Lidskii's additive inequalities (both for eigenvalues and singular values) can be interpreted as an explicit description of global minimizers of functions that are built on unitarily invariant norms, with domains consisting of certain orbits of matrices (under the action of the unitary group). In this paper, we show that Lidskii's inequalities actually describe all global minimizers of such functions and that local minimizers are also global minimizers. We use these results to obtain partial results related to local minimizers of generalized frame operator distances in the context of finite frame theory. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88407 Massey, Pedro Gustavo; Rios, Noelia Belén; Stojanoff, Demetrio; Local Lidskii's theorems for unitarily invariant norms; Elsevier Science Inc; Linear Algebra and its Applications; 557; 11-2018; 34-61 0024-3795 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88407 |
identifier_str_mv |
Massey, Pedro Gustavo; Rios, Noelia Belén; Stojanoff, Demetrio; Local Lidskii's theorems for unitarily invariant norms; Elsevier Science Inc; Linear Algebra and its Applications; 557; 11-2018; 34-61 0024-3795 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2018.07.022 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0024379518303501 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc |
publisher.none.fl_str_mv |
Elsevier Science Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269395312705536 |
score |
13.13397 |