Some operator inequalities for unitarily invariant norms
- Autores
- Cano, Cristina; Mosconi, Irene; Stojanoff, Demetrio
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let L(H) be the algebra of bounded operators on a complex separable Hilbert space H. Let N be a unitarily invariant norm defined on a norm ideal J ⊆ L(H). Given two positive invertible operators P,Q ∊ L(H) and k ∊ (−2, 2], we show that N (PTQ−1 + P−1TQ + kT) ≥ (2 + k)N(T), T ∊ J. This extends Zhang’s inequality for matrices. We prove that this inequality is equivalent to two particular cases of itself, namely P = Q and Q = P−1. We also characterize those numbers k such that the map γ : L(H) → L(H) given by γ(T) = PTQ−1 +P−1TQ+kT is invertible, and we estimate the induced norm of γ−1 acting on the norm ideal J. We compute sharp constants for the involved inequalities in several particular cases.
Universidad del Comahue
Facultad de Ciencias Exactas - Materia
-
Matemática
positive matrices
inequalities
unitarily invariant norm - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/156335
Ver los metadatos del registro completo
id |
SEDICI_3b9209eb441b0709318a8c19a1f101e3 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/156335 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Some operator inequalities for unitarily invariant normsCano, CristinaMosconi, IreneStojanoff, DemetrioMatemáticapositive matricesinequalitiesunitarily invariant normLet L(H) be the algebra of bounded operators on a complex separable Hilbert space H. Let N be a unitarily invariant norm defined on a norm ideal J ⊆ L(H). Given two positive invertible operators P,Q ∊ L(H) and k ∊ (−2, 2], we show that N (PTQ−1 + P−1TQ + kT) ≥ (2 + k)N(T), T ∊ J. This extends Zhang’s inequality for matrices. We prove that this inequality is equivalent to two particular cases of itself, namely P = Q and Q = P−1. We also characterize those numbers k such that the map γ : L(H) → L(H) given by γ(T) = PTQ−1 +P−1TQ+kT is invertible, and we estimate the induced norm of γ−1 acting on the norm ideal J. We compute sharp constants for the involved inequalities in several particular cases.Universidad del ComahueFacultad de Ciencias Exactas2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf53-66http://sedici.unlp.edu.ar/handle/10915/156335enginfo:eu-repo/semantics/altIdentifier/issn/1669-9637info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:21:32Zoai:sedici.unlp.edu.ar:10915/156335Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:21:32.761SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Some operator inequalities for unitarily invariant norms |
title |
Some operator inequalities for unitarily invariant norms |
spellingShingle |
Some operator inequalities for unitarily invariant norms Cano, Cristina Matemática positive matrices inequalities unitarily invariant norm |
title_short |
Some operator inequalities for unitarily invariant norms |
title_full |
Some operator inequalities for unitarily invariant norms |
title_fullStr |
Some operator inequalities for unitarily invariant norms |
title_full_unstemmed |
Some operator inequalities for unitarily invariant norms |
title_sort |
Some operator inequalities for unitarily invariant norms |
dc.creator.none.fl_str_mv |
Cano, Cristina Mosconi, Irene Stojanoff, Demetrio |
author |
Cano, Cristina |
author_facet |
Cano, Cristina Mosconi, Irene Stojanoff, Demetrio |
author_role |
author |
author2 |
Mosconi, Irene Stojanoff, Demetrio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Matemática positive matrices inequalities unitarily invariant norm |
topic |
Matemática positive matrices inequalities unitarily invariant norm |
dc.description.none.fl_txt_mv |
Let L(H) be the algebra of bounded operators on a complex separable Hilbert space H. Let N be a unitarily invariant norm defined on a norm ideal J ⊆ L(H). Given two positive invertible operators P,Q ∊ L(H) and k ∊ (−2, 2], we show that N (PTQ−1 + P−1TQ + kT) ≥ (2 + k)N(T), T ∊ J. This extends Zhang’s inequality for matrices. We prove that this inequality is equivalent to two particular cases of itself, namely P = Q and Q = P−1. We also characterize those numbers k such that the map γ : L(H) → L(H) given by γ(T) = PTQ−1 +P−1TQ+kT is invertible, and we estimate the induced norm of γ−1 acting on the norm ideal J. We compute sharp constants for the involved inequalities in several particular cases. Universidad del Comahue Facultad de Ciencias Exactas |
description |
Let L(H) be the algebra of bounded operators on a complex separable Hilbert space H. Let N be a unitarily invariant norm defined on a norm ideal J ⊆ L(H). Given two positive invertible operators P,Q ∊ L(H) and k ∊ (−2, 2], we show that N (PTQ−1 + P−1TQ + kT) ≥ (2 + k)N(T), T ∊ J. This extends Zhang’s inequality for matrices. We prove that this inequality is equivalent to two particular cases of itself, namely P = Q and Q = P−1. We also characterize those numbers k such that the map γ : L(H) → L(H) given by γ(T) = PTQ−1 +P−1TQ+kT is invertible, and we estimate the induced norm of γ−1 acting on the norm ideal J. We compute sharp constants for the involved inequalities in several particular cases. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/156335 |
url |
http://sedici.unlp.edu.ar/handle/10915/156335 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1669-9637 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 53-66 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846783647943753728 |
score |
12.982451 |