Some operator inequalities for unitarily invariant norms

Autores
Cano, Cristina; Mosconi, Irene; Stojanoff, Demetrio
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let L(H) be the algebra of bounded operators on a complex separable Hilbert space H. Let N be a unitarily invariant norm defined on a norm ideal J ⊆ L(H). Given two positive invertible operators P,Q ∊ L(H) and k ∊ (−2, 2], we show that N (PTQ−1 + P−1TQ + kT) ≥ (2 + k)N(T), T ∊ J. This extends Zhang’s inequality for matrices. We prove that this inequality is equivalent to two particular cases of itself, namely P = Q and Q = P−1. We also characterize those numbers k such that the map γ : L(H) → L(H) given by γ(T) = PTQ−1 +P−1TQ+kT is invertible, and we estimate the induced norm of γ−1 acting on the norm ideal J. We compute sharp constants for the involved inequalities in several particular cases.
Universidad del Comahue
Facultad de Ciencias Exactas
Materia
Matemática
positive matrices
inequalities
unitarily invariant norm
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/156335

id SEDICI_3b9209eb441b0709318a8c19a1f101e3
oai_identifier_str oai:sedici.unlp.edu.ar:10915/156335
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Some operator inequalities for unitarily invariant normsCano, CristinaMosconi, IreneStojanoff, DemetrioMatemáticapositive matricesinequalitiesunitarily invariant normLet L(H) be the algebra of bounded operators on a complex separable Hilbert space H. Let N be a unitarily invariant norm defined on a norm ideal J ⊆ L(H). Given two positive invertible operators P,Q ∊ L(H) and k ∊ (−2, 2], we show that N (PTQ−1 + P−1TQ + kT) ≥ (2 + k)N(T), T ∊ J. This extends Zhang’s inequality for matrices. We prove that this inequality is equivalent to two particular cases of itself, namely P = Q and Q = P−1. We also characterize those numbers k such that the map γ : L(H) → L(H) given by γ(T) = PTQ−1 +P−1TQ+kT is invertible, and we estimate the induced norm of γ−1 acting on the norm ideal J. We compute sharp constants for the involved inequalities in several particular cases.Universidad del ComahueFacultad de Ciencias Exactas2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf53-66http://sedici.unlp.edu.ar/handle/10915/156335enginfo:eu-repo/semantics/altIdentifier/issn/1669-9637info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:21:32Zoai:sedici.unlp.edu.ar:10915/156335Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:21:32.761SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Some operator inequalities for unitarily invariant norms
title Some operator inequalities for unitarily invariant norms
spellingShingle Some operator inequalities for unitarily invariant norms
Cano, Cristina
Matemática
positive matrices
inequalities
unitarily invariant norm
title_short Some operator inequalities for unitarily invariant norms
title_full Some operator inequalities for unitarily invariant norms
title_fullStr Some operator inequalities for unitarily invariant norms
title_full_unstemmed Some operator inequalities for unitarily invariant norms
title_sort Some operator inequalities for unitarily invariant norms
dc.creator.none.fl_str_mv Cano, Cristina
Mosconi, Irene
Stojanoff, Demetrio
author Cano, Cristina
author_facet Cano, Cristina
Mosconi, Irene
Stojanoff, Demetrio
author_role author
author2 Mosconi, Irene
Stojanoff, Demetrio
author2_role author
author
dc.subject.none.fl_str_mv Matemática
positive matrices
inequalities
unitarily invariant norm
topic Matemática
positive matrices
inequalities
unitarily invariant norm
dc.description.none.fl_txt_mv Let L(H) be the algebra of bounded operators on a complex separable Hilbert space H. Let N be a unitarily invariant norm defined on a norm ideal J ⊆ L(H). Given two positive invertible operators P,Q ∊ L(H) and k ∊ (−2, 2], we show that N (PTQ−1 + P−1TQ + kT) ≥ (2 + k)N(T), T ∊ J. This extends Zhang’s inequality for matrices. We prove that this inequality is equivalent to two particular cases of itself, namely P = Q and Q = P−1. We also characterize those numbers k such that the map γ : L(H) → L(H) given by γ(T) = PTQ−1 +P−1TQ+kT is invertible, and we estimate the induced norm of γ−1 acting on the norm ideal J. We compute sharp constants for the involved inequalities in several particular cases.
Universidad del Comahue
Facultad de Ciencias Exactas
description Let L(H) be the algebra of bounded operators on a complex separable Hilbert space H. Let N be a unitarily invariant norm defined on a norm ideal J ⊆ L(H). Given two positive invertible operators P,Q ∊ L(H) and k ∊ (−2, 2], we show that N (PTQ−1 + P−1TQ + kT) ≥ (2 + k)N(T), T ∊ J. This extends Zhang’s inequality for matrices. We prove that this inequality is equivalent to two particular cases of itself, namely P = Q and Q = P−1. We also characterize those numbers k such that the map γ : L(H) → L(H) given by γ(T) = PTQ−1 +P−1TQ+kT is invertible, and we estimate the induced norm of γ−1 acting on the norm ideal J. We compute sharp constants for the involved inequalities in several particular cases.
publishDate 2005
dc.date.none.fl_str_mv 2005
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/156335
url http://sedici.unlp.edu.ar/handle/10915/156335
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1669-9637
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
53-66
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783647943753728
score 12.982451