Multiplicative Lidskii's inequalities and optimal perturbations of frames

Autores
Massey, Pedro Gustavo; Ruiz, Mariano Andrés; Stojanoff, Demetrio
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we study two design problems in frame theory: on the one hand, given a fixed finite frame F = {fj}j∈IIn for double-struck Cd we compute those dual frames G of F that are optimal perturbations of the canonical dual frame for F under certain restrictions on the norms of the elements of G. On the other hand, we compute those V·F = {V fj}j∈IIn - for invertible operators V which are close to the identity - that are optimal perturbations of F. That is, we compute the optimal perturbations of F among frames G = {gfj}j∈IIn that have the same linear relations as F. In both cases, optimality is measured with respect to submajorization of the eigenvalues of the frame operators. Hence, our optimal designs are minimizers of a family of convex potentials that include the frame potential and the mean squared error. The key tool for these results is a multiplicative analogue of Lidskii's inequality in terms of log-majorization and a characterization of the case of equality.
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Matemática
Convex potentials
Frames
Lidskii's inequality
Majorization
Perturbation of frames
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/86125

id SEDICI_13aa8d65bcd43f6f892cd0cd600a98a9
oai_identifier_str oai:sedici.unlp.edu.ar:10915/86125
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Multiplicative Lidskii's inequalities and optimal perturbations of framesMassey, Pedro GustavoRuiz, Mariano AndrésStojanoff, DemetrioCiencias ExactasMatemáticaConvex potentialsFramesLidskii's inequalityMajorizationPerturbation of framesIn this paper we study two design problems in frame theory: on the one hand, given a fixed finite frame F = {f<SUB>j</SUB>}<SUB>j∈II<sub>n</sub></SUB> for double-struck C<SUP>d</SUP> we compute those dual frames G of F that are optimal perturbations of the canonical dual frame for F under certain restrictions on the norms of the elements of G. On the other hand, we compute those V·F = {V f<SUB>j</SUB>}<SUB>j∈II<sub>n</sub></SUB> - for invertible operators V which are close to the identity - that are optimal perturbations of F. That is, we compute the optimal perturbations of F among frames G = {gf<SUB>j</SUB>}<SUB>j∈II<sub>n</sub></SUB> that have the same linear relations as F. In both cases, optimality is measured with respect to submajorization of the eigenvalues of the frame operators. Hence, our optimal designs are minimizers of a family of convex potentials that include the frame potential and the mean squared error. The key tool for these results is a multiplicative analogue of Lidskii's inequality in terms of log-majorization and a characterization of the case of equality.Facultad de Ciencias Exactas2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf539-568http://sedici.unlp.edu.ar/handle/10915/86125enginfo:eu-repo/semantics/altIdentifier/issn/0024-3795info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2014.12.004info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:57:46Zoai:sedici.unlp.edu.ar:10915/86125Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:57:47.177SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Multiplicative Lidskii's inequalities and optimal perturbations of frames
title Multiplicative Lidskii's inequalities and optimal perturbations of frames
spellingShingle Multiplicative Lidskii's inequalities and optimal perturbations of frames
Massey, Pedro Gustavo
Ciencias Exactas
Matemática
Convex potentials
Frames
Lidskii's inequality
Majorization
Perturbation of frames
title_short Multiplicative Lidskii's inequalities and optimal perturbations of frames
title_full Multiplicative Lidskii's inequalities and optimal perturbations of frames
title_fullStr Multiplicative Lidskii's inequalities and optimal perturbations of frames
title_full_unstemmed Multiplicative Lidskii's inequalities and optimal perturbations of frames
title_sort Multiplicative Lidskii's inequalities and optimal perturbations of frames
dc.creator.none.fl_str_mv Massey, Pedro Gustavo
Ruiz, Mariano Andrés
Stojanoff, Demetrio
author Massey, Pedro Gustavo
author_facet Massey, Pedro Gustavo
Ruiz, Mariano Andrés
Stojanoff, Demetrio
author_role author
author2 Ruiz, Mariano Andrés
Stojanoff, Demetrio
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Matemática
Convex potentials
Frames
Lidskii's inequality
Majorization
Perturbation of frames
topic Ciencias Exactas
Matemática
Convex potentials
Frames
Lidskii's inequality
Majorization
Perturbation of frames
dc.description.none.fl_txt_mv In this paper we study two design problems in frame theory: on the one hand, given a fixed finite frame F = {f<SUB>j</SUB>}<SUB>j∈II<sub>n</sub></SUB> for double-struck C<SUP>d</SUP> we compute those dual frames G of F that are optimal perturbations of the canonical dual frame for F under certain restrictions on the norms of the elements of G. On the other hand, we compute those V·F = {V f<SUB>j</SUB>}<SUB>j∈II<sub>n</sub></SUB> - for invertible operators V which are close to the identity - that are optimal perturbations of F. That is, we compute the optimal perturbations of F among frames G = {gf<SUB>j</SUB>}<SUB>j∈II<sub>n</sub></SUB> that have the same linear relations as F. In both cases, optimality is measured with respect to submajorization of the eigenvalues of the frame operators. Hence, our optimal designs are minimizers of a family of convex potentials that include the frame potential and the mean squared error. The key tool for these results is a multiplicative analogue of Lidskii's inequality in terms of log-majorization and a characterization of the case of equality.
Facultad de Ciencias Exactas
description In this paper we study two design problems in frame theory: on the one hand, given a fixed finite frame F = {f<SUB>j</SUB>}<SUB>j∈II<sub>n</sub></SUB> for double-struck C<SUP>d</SUP> we compute those dual frames G of F that are optimal perturbations of the canonical dual frame for F under certain restrictions on the norms of the elements of G. On the other hand, we compute those V·F = {V f<SUB>j</SUB>}<SUB>j∈II<sub>n</sub></SUB> - for invertible operators V which are close to the identity - that are optimal perturbations of F. That is, we compute the optimal perturbations of F among frames G = {gf<SUB>j</SUB>}<SUB>j∈II<sub>n</sub></SUB> that have the same linear relations as F. In both cases, optimality is measured with respect to submajorization of the eigenvalues of the frame operators. Hence, our optimal designs are minimizers of a family of convex potentials that include the frame potential and the mean squared error. The key tool for these results is a multiplicative analogue of Lidskii's inequality in terms of log-majorization and a characterization of the case of equality.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/86125
url http://sedici.unlp.edu.ar/handle/10915/86125
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0024-3795
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2014.12.004
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
539-568
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783193980600320
score 12.982451