Multiplicative Lidskii's inequalities and optimal perturbations of frames
- Autores
- Massey, Pedro Gustavo; Ruiz, Mariano Andrés; Stojanoff, Demetrio
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we study two design problems in frame theory: on the one hand, given a fixed finite frame F = {fj}j∈IIn for double-struck Cd we compute those dual frames G of F that are optimal perturbations of the canonical dual frame for F under certain restrictions on the norms of the elements of G. On the other hand, we compute those V·F = {V fj}j∈IIn - for invertible operators V which are close to the identity - that are optimal perturbations of F. That is, we compute the optimal perturbations of F among frames G = {gfj}j∈IIn that have the same linear relations as F. In both cases, optimality is measured with respect to submajorization of the eigenvalues of the frame operators. Hence, our optimal designs are minimizers of a family of convex potentials that include the frame potential and the mean squared error. The key tool for these results is a multiplicative analogue of Lidskii's inequality in terms of log-majorization and a characterization of the case of equality.
Facultad de Ciencias Exactas - Materia
-
Ciencias Exactas
Matemática
Convex potentials
Frames
Lidskii's inequality
Majorization
Perturbation of frames - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/86125
Ver los metadatos del registro completo
| id |
SEDICI_13aa8d65bcd43f6f892cd0cd600a98a9 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/86125 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Multiplicative Lidskii's inequalities and optimal perturbations of framesMassey, Pedro GustavoRuiz, Mariano AndrésStojanoff, DemetrioCiencias ExactasMatemáticaConvex potentialsFramesLidskii's inequalityMajorizationPerturbation of framesIn this paper we study two design problems in frame theory: on the one hand, given a fixed finite frame F = {f<SUB>j</SUB>}<SUB>j∈II<sub>n</sub></SUB> for double-struck C<SUP>d</SUP> we compute those dual frames G of F that are optimal perturbations of the canonical dual frame for F under certain restrictions on the norms of the elements of G. On the other hand, we compute those V·F = {V f<SUB>j</SUB>}<SUB>j∈II<sub>n</sub></SUB> - for invertible operators V which are close to the identity - that are optimal perturbations of F. That is, we compute the optimal perturbations of F among frames G = {gf<SUB>j</SUB>}<SUB>j∈II<sub>n</sub></SUB> that have the same linear relations as F. In both cases, optimality is measured with respect to submajorization of the eigenvalues of the frame operators. Hence, our optimal designs are minimizers of a family of convex potentials that include the frame potential and the mean squared error. The key tool for these results is a multiplicative analogue of Lidskii's inequality in terms of log-majorization and a characterization of the case of equality.Facultad de Ciencias Exactas2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf539-568http://sedici.unlp.edu.ar/handle/10915/86125enginfo:eu-repo/semantics/altIdentifier/issn/0024-3795info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2014.12.004info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:57:46Zoai:sedici.unlp.edu.ar:10915/86125Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:57:47.177SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Multiplicative Lidskii's inequalities and optimal perturbations of frames |
| title |
Multiplicative Lidskii's inequalities and optimal perturbations of frames |
| spellingShingle |
Multiplicative Lidskii's inequalities and optimal perturbations of frames Massey, Pedro Gustavo Ciencias Exactas Matemática Convex potentials Frames Lidskii's inequality Majorization Perturbation of frames |
| title_short |
Multiplicative Lidskii's inequalities and optimal perturbations of frames |
| title_full |
Multiplicative Lidskii's inequalities and optimal perturbations of frames |
| title_fullStr |
Multiplicative Lidskii's inequalities and optimal perturbations of frames |
| title_full_unstemmed |
Multiplicative Lidskii's inequalities and optimal perturbations of frames |
| title_sort |
Multiplicative Lidskii's inequalities and optimal perturbations of frames |
| dc.creator.none.fl_str_mv |
Massey, Pedro Gustavo Ruiz, Mariano Andrés Stojanoff, Demetrio |
| author |
Massey, Pedro Gustavo |
| author_facet |
Massey, Pedro Gustavo Ruiz, Mariano Andrés Stojanoff, Demetrio |
| author_role |
author |
| author2 |
Ruiz, Mariano Andrés Stojanoff, Demetrio |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Ciencias Exactas Matemática Convex potentials Frames Lidskii's inequality Majorization Perturbation of frames |
| topic |
Ciencias Exactas Matemática Convex potentials Frames Lidskii's inequality Majorization Perturbation of frames |
| dc.description.none.fl_txt_mv |
In this paper we study two design problems in frame theory: on the one hand, given a fixed finite frame F = {f<SUB>j</SUB>}<SUB>j∈II<sub>n</sub></SUB> for double-struck C<SUP>d</SUP> we compute those dual frames G of F that are optimal perturbations of the canonical dual frame for F under certain restrictions on the norms of the elements of G. On the other hand, we compute those V·F = {V f<SUB>j</SUB>}<SUB>j∈II<sub>n</sub></SUB> - for invertible operators V which are close to the identity - that are optimal perturbations of F. That is, we compute the optimal perturbations of F among frames G = {gf<SUB>j</SUB>}<SUB>j∈II<sub>n</sub></SUB> that have the same linear relations as F. In both cases, optimality is measured with respect to submajorization of the eigenvalues of the frame operators. Hence, our optimal designs are minimizers of a family of convex potentials that include the frame potential and the mean squared error. The key tool for these results is a multiplicative analogue of Lidskii's inequality in terms of log-majorization and a characterization of the case of equality. Facultad de Ciencias Exactas |
| description |
In this paper we study two design problems in frame theory: on the one hand, given a fixed finite frame F = {f<SUB>j</SUB>}<SUB>j∈II<sub>n</sub></SUB> for double-struck C<SUP>d</SUP> we compute those dual frames G of F that are optimal perturbations of the canonical dual frame for F under certain restrictions on the norms of the elements of G. On the other hand, we compute those V·F = {V f<SUB>j</SUB>}<SUB>j∈II<sub>n</sub></SUB> - for invertible operators V which are close to the identity - that are optimal perturbations of F. That is, we compute the optimal perturbations of F among frames G = {gf<SUB>j</SUB>}<SUB>j∈II<sub>n</sub></SUB> that have the same linear relations as F. In both cases, optimality is measured with respect to submajorization of the eigenvalues of the frame operators. Hence, our optimal designs are minimizers of a family of convex potentials that include the frame potential and the mean squared error. The key tool for these results is a multiplicative analogue of Lidskii's inequality in terms of log-majorization and a characterization of the case of equality. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/86125 |
| url |
http://sedici.unlp.edu.ar/handle/10915/86125 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0024-3795 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2014.12.004 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 539-568 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783193980600320 |
| score |
12.982451 |