Generalized frame operator distance problems
- Autores
- Massey, Pedro Gustavo; Rios, Noelia Belén; Stojanoff, Demetrio
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let S∈Md(C)+ be a positive semidefinite d×d complex matrix and let a=(ai)i∈Ik ∈R>0 k, indexed by Ik={1,...,k}, be a k-tuple of positive numbers. Let Td(a) denote the set of families G={gi}i∈Ik ∈(Cd)k such that ‖gi‖2=ai, for i∈Ik; thus, Td(a) is the product of spheres in Cd endowed with the product metric. For a strictly convex unitarily invariant norm N in Md(C), we consider the generalized frame operator distance function Θ(N,S,a) defined on Td(a), given by Θ(N,S,a)(G)=N(S−SG) where SG=∑_{i∈Ik} gigi^⁎ ∈ Md(C)+. In this paper we determine the geometrical and spectral structure of local minimizers G0∈Td(a) of Θ(N,S,a). In particular, we show that local minimizers are global minimizers, and that these families do not depend on the particular choice of N.
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Rios, Noelia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Stojanoff, Demetrio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
MATRIX APPROXIMATION
UNITARILY INVARIANT NORMS
MAJORIZATION
FRAME OPERATOR DISTANCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/106610
Ver los metadatos del registro completo
id |
CONICETDig_865acb4ab0075b375cde496f0ce227e8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/106610 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Generalized frame operator distance problemsMassey, Pedro GustavoRios, Noelia BelénStojanoff, DemetrioMATRIX APPROXIMATIONUNITARILY INVARIANT NORMSMAJORIZATIONFRAME OPERATOR DISTANCEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let S∈Md(C)+ be a positive semidefinite d×d complex matrix and let a=(ai)i∈Ik ∈R>0 k, indexed by Ik={1,...,k}, be a k-tuple of positive numbers. Let Td(a) denote the set of families G={gi}i∈Ik ∈(Cd)k such that ‖gi‖2=ai, for i∈Ik; thus, Td(a) is the product of spheres in Cd endowed with the product metric. For a strictly convex unitarily invariant norm N in Md(C), we consider the generalized frame operator distance function Θ(N,S,a) defined on Td(a), given by Θ(N,S,a)(G)=N(S−SG) where SG=∑_{i∈Ik} gigi^⁎ ∈ Md(C)+. In this paper we determine the geometrical and spectral structure of local minimizers G0∈Td(a) of Θ(N,S,a). In particular, we show that local minimizers are global minimizers, and that these families do not depend on the particular choice of N.Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Rios, Noelia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Stojanoff, Demetrio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaAcademic Press Inc Elsevier Science2019-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/106610Massey, Pedro Gustavo; Rios, Noelia Belén; Stojanoff, Demetrio; Generalized frame operator distance problems; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 479; 2; 11-2019; 1738-17630022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022247X19305827info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2019.07.021info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1812.10365info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:11:17Zoai:ri.conicet.gov.ar:11336/106610instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:11:18.195CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Generalized frame operator distance problems |
title |
Generalized frame operator distance problems |
spellingShingle |
Generalized frame operator distance problems Massey, Pedro Gustavo MATRIX APPROXIMATION UNITARILY INVARIANT NORMS MAJORIZATION FRAME OPERATOR DISTANCE |
title_short |
Generalized frame operator distance problems |
title_full |
Generalized frame operator distance problems |
title_fullStr |
Generalized frame operator distance problems |
title_full_unstemmed |
Generalized frame operator distance problems |
title_sort |
Generalized frame operator distance problems |
dc.creator.none.fl_str_mv |
Massey, Pedro Gustavo Rios, Noelia Belén Stojanoff, Demetrio |
author |
Massey, Pedro Gustavo |
author_facet |
Massey, Pedro Gustavo Rios, Noelia Belén Stojanoff, Demetrio |
author_role |
author |
author2 |
Rios, Noelia Belén Stojanoff, Demetrio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
MATRIX APPROXIMATION UNITARILY INVARIANT NORMS MAJORIZATION FRAME OPERATOR DISTANCE |
topic |
MATRIX APPROXIMATION UNITARILY INVARIANT NORMS MAJORIZATION FRAME OPERATOR DISTANCE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let S∈Md(C)+ be a positive semidefinite d×d complex matrix and let a=(ai)i∈Ik ∈R>0 k, indexed by Ik={1,...,k}, be a k-tuple of positive numbers. Let Td(a) denote the set of families G={gi}i∈Ik ∈(Cd)k such that ‖gi‖2=ai, for i∈Ik; thus, Td(a) is the product of spheres in Cd endowed with the product metric. For a strictly convex unitarily invariant norm N in Md(C), we consider the generalized frame operator distance function Θ(N,S,a) defined on Td(a), given by Θ(N,S,a)(G)=N(S−SG) where SG=∑_{i∈Ik} gigi^⁎ ∈ Md(C)+. In this paper we determine the geometrical and spectral structure of local minimizers G0∈Td(a) of Θ(N,S,a). In particular, we show that local minimizers are global minimizers, and that these families do not depend on the particular choice of N. Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Rios, Noelia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Stojanoff, Demetrio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
Let S∈Md(C)+ be a positive semidefinite d×d complex matrix and let a=(ai)i∈Ik ∈R>0 k, indexed by Ik={1,...,k}, be a k-tuple of positive numbers. Let Td(a) denote the set of families G={gi}i∈Ik ∈(Cd)k such that ‖gi‖2=ai, for i∈Ik; thus, Td(a) is the product of spheres in Cd endowed with the product metric. For a strictly convex unitarily invariant norm N in Md(C), we consider the generalized frame operator distance function Θ(N,S,a) defined on Td(a), given by Θ(N,S,a)(G)=N(S−SG) where SG=∑_{i∈Ik} gigi^⁎ ∈ Md(C)+. In this paper we determine the geometrical and spectral structure of local minimizers G0∈Td(a) of Θ(N,S,a). In particular, we show that local minimizers are global minimizers, and that these families do not depend on the particular choice of N. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/106610 Massey, Pedro Gustavo; Rios, Noelia Belén; Stojanoff, Demetrio; Generalized frame operator distance problems; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 479; 2; 11-2019; 1738-1763 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/106610 |
identifier_str_mv |
Massey, Pedro Gustavo; Rios, Noelia Belén; Stojanoff, Demetrio; Generalized frame operator distance problems; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 479; 2; 11-2019; 1738-1763 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022247X19305827 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2019.07.021 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1812.10365 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980577484996608 |
score |
12.993085 |