Multiplicative Lidskii's inequalities and optimal perturbations of frames
- Autores
- Massey, Pedro Gustavo; Ruiz, Mariano Andres; Stojanoff, Demetrio
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we study two design problems in frame theory: on the one hand, given a fixed finite frame F={fj}j∈In for Cd we compute those dual frames G of F that are optimal perturbations of the canonical dual frame for F under certain restrictions on the norms of the elements of G. On the other hand, we compute those V⋅F={Vfj}j∈In – for invertible operators V which are close to the identity – that are optimal perturbations of F. That is, we compute the optimal perturbations of F among frames G={gj}j∈In that have the same linear relations as F. In both cases, optimality is measured with respect to submajorization of the eigenvalues of the frame operators. Hence, our optimal designs are minimizers of a family of convex potentials that include the frame potential and the mean squared error. The key tool for these results is a multiplicative analogue of Lidskii's inequality in terms of log-majorization and a characterization of the case of equality.
Fil: Massey, Pedro Gustavo. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina
Fil: Ruiz, Mariano Andres. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina
Fil: Stojanoff, Demetrio. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina - Materia
-
CONVEX POTENTIALS
FRAMES
LIDSKII'S INEQUALITY
MAJORIZATION
PERTURBATION OF FRAMES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/2672
Ver los metadatos del registro completo
id |
CONICETDig_dc4b60824415bc1f43118dd32f15b864 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/2672 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multiplicative Lidskii's inequalities and optimal perturbations of framesMassey, Pedro GustavoRuiz, Mariano AndresStojanoff, DemetrioCONVEX POTENTIALSFRAMESLIDSKII'S INEQUALITYMAJORIZATIONPERTURBATION OF FRAMEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we study two design problems in frame theory: on the one hand, given a fixed finite frame F={fj}j∈In for Cd we compute those dual frames G of F that are optimal perturbations of the canonical dual frame for F under certain restrictions on the norms of the elements of G. On the other hand, we compute those V⋅F={Vfj}j∈In – for invertible operators V which are close to the identity – that are optimal perturbations of F. That is, we compute the optimal perturbations of F among frames G={gj}j∈In that have the same linear relations as F. In both cases, optimality is measured with respect to submajorization of the eigenvalues of the frame operators. Hence, our optimal designs are minimizers of a family of convex potentials that include the frame potential and the mean squared error. The key tool for these results is a multiplicative analogue of Lidskii's inequality in terms of log-majorization and a characterization of the case of equality.Fil: Massey, Pedro Gustavo. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; ArgentinaFil: Ruiz, Mariano Andres. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; ArgentinaFil: Stojanoff, Demetrio. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; ArgentinaElsevier Science Inc.2015-03-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2672Massey, Pedro Gustavo; Ruiz, Mariano Andres; Stojanoff, Demetrio; Multiplicative Lidskii's inequalities and optimal perturbations of frames; Elsevier Science Inc.; Linear Algebra And Its Applications; 469; 15-3-2015; 539-5680024-3795enginfo:eu-repo/semantics/altIdentifier/url/http://goo.gl/xNx2CJinfo:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1405.4277info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2014.12.004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:07:06Zoai:ri.conicet.gov.ar:11336/2672instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:07:06.99CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multiplicative Lidskii's inequalities and optimal perturbations of frames |
title |
Multiplicative Lidskii's inequalities and optimal perturbations of frames |
spellingShingle |
Multiplicative Lidskii's inequalities and optimal perturbations of frames Massey, Pedro Gustavo CONVEX POTENTIALS FRAMES LIDSKII'S INEQUALITY MAJORIZATION PERTURBATION OF FRAMES |
title_short |
Multiplicative Lidskii's inequalities and optimal perturbations of frames |
title_full |
Multiplicative Lidskii's inequalities and optimal perturbations of frames |
title_fullStr |
Multiplicative Lidskii's inequalities and optimal perturbations of frames |
title_full_unstemmed |
Multiplicative Lidskii's inequalities and optimal perturbations of frames |
title_sort |
Multiplicative Lidskii's inequalities and optimal perturbations of frames |
dc.creator.none.fl_str_mv |
Massey, Pedro Gustavo Ruiz, Mariano Andres Stojanoff, Demetrio |
author |
Massey, Pedro Gustavo |
author_facet |
Massey, Pedro Gustavo Ruiz, Mariano Andres Stojanoff, Demetrio |
author_role |
author |
author2 |
Ruiz, Mariano Andres Stojanoff, Demetrio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CONVEX POTENTIALS FRAMES LIDSKII'S INEQUALITY MAJORIZATION PERTURBATION OF FRAMES |
topic |
CONVEX POTENTIALS FRAMES LIDSKII'S INEQUALITY MAJORIZATION PERTURBATION OF FRAMES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we study two design problems in frame theory: on the one hand, given a fixed finite frame F={fj}j∈In for Cd we compute those dual frames G of F that are optimal perturbations of the canonical dual frame for F under certain restrictions on the norms of the elements of G. On the other hand, we compute those V⋅F={Vfj}j∈In – for invertible operators V which are close to the identity – that are optimal perturbations of F. That is, we compute the optimal perturbations of F among frames G={gj}j∈In that have the same linear relations as F. In both cases, optimality is measured with respect to submajorization of the eigenvalues of the frame operators. Hence, our optimal designs are minimizers of a family of convex potentials that include the frame potential and the mean squared error. The key tool for these results is a multiplicative analogue of Lidskii's inequality in terms of log-majorization and a characterization of the case of equality. Fil: Massey, Pedro Gustavo. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina Fil: Ruiz, Mariano Andres. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina Fil: Stojanoff, Demetrio. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina |
description |
In this paper we study two design problems in frame theory: on the one hand, given a fixed finite frame F={fj}j∈In for Cd we compute those dual frames G of F that are optimal perturbations of the canonical dual frame for F under certain restrictions on the norms of the elements of G. On the other hand, we compute those V⋅F={Vfj}j∈In – for invertible operators V which are close to the identity – that are optimal perturbations of F. That is, we compute the optimal perturbations of F among frames G={gj}j∈In that have the same linear relations as F. In both cases, optimality is measured with respect to submajorization of the eigenvalues of the frame operators. Hence, our optimal designs are minimizers of a family of convex potentials that include the frame potential and the mean squared error. The key tool for these results is a multiplicative analogue of Lidskii's inequality in terms of log-majorization and a characterization of the case of equality. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/2672 Massey, Pedro Gustavo; Ruiz, Mariano Andres; Stojanoff, Demetrio; Multiplicative Lidskii's inequalities and optimal perturbations of frames; Elsevier Science Inc.; Linear Algebra And Its Applications; 469; 15-3-2015; 539-568 0024-3795 |
url |
http://hdl.handle.net/11336/2672 |
identifier_str_mv |
Massey, Pedro Gustavo; Ruiz, Mariano Andres; Stojanoff, Demetrio; Multiplicative Lidskii's inequalities and optimal perturbations of frames; Elsevier Science Inc.; Linear Algebra And Its Applications; 469; 15-3-2015; 539-568 0024-3795 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://goo.gl/xNx2CJ info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1405.4277 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2014.12.004 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc. |
publisher.none.fl_str_mv |
Elsevier Science Inc. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782432898973696 |
score |
12.982451 |