Regularization methods for ill-posed problems in multiple Hilbert scales
- Autores
- Mazzieri, Gisela Luciana; Spies, Ruben Daniel
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Several convergence results in Hilbert scales under different source conditions are proved and orders of convergence and optimal orders of convergence are derived. Also, relations between those source conditions are proved. The concept of a multiple Hilbert scale on a product space is introduced, and regularization methods on these scales are defined, both for the case of a single observation and for the case of multiple observations. In the latter case, it is shown how vector-valued regularization functions in these multiple Hilbert scales can be used. In all cases, convergence is proved and orders and optimal orders of convergence are shown. Finally, some potential applications and open problems are discussed.
Fil: Mazzieri, Gisela Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Nacional del Litoral. Facultad de Bioquimica y Ciencias Biologicas. Departamento de Matematicas; Argentina
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina - Materia
-
REGULARIZATION
MULTIPLE HILBERT SCALES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/273855
Ver los metadatos del registro completo
| id |
CONICETDig_02db9266b53772e7226d89da03fce4a7 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/273855 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Regularization methods for ill-posed problems in multiple Hilbert scalesMazzieri, Gisela LucianaSpies, Ruben DanielREGULARIZATIONMULTIPLE HILBERT SCALEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Several convergence results in Hilbert scales under different source conditions are proved and orders of convergence and optimal orders of convergence are derived. Also, relations between those source conditions are proved. The concept of a multiple Hilbert scale on a product space is introduced, and regularization methods on these scales are defined, both for the case of a single observation and for the case of multiple observations. In the latter case, it is shown how vector-valued regularization functions in these multiple Hilbert scales can be used. In all cases, convergence is proved and orders and optimal orders of convergence are shown. Finally, some potential applications and open problems are discussed.Fil: Mazzieri, Gisela Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Nacional del Litoral. Facultad de Bioquimica y Ciencias Biologicas. Departamento de Matematicas; ArgentinaFil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaIOP Publishing2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/273855Mazzieri, Gisela Luciana; Spies, Ruben Daniel; Regularization methods for ill-posed problems in multiple Hilbert scales; IOP Publishing; Inverse Problems; 28; 5; 5-2012; 1-300266-5611CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/0266-5611/28/5/055005info:eu-repo/semantics/altIdentifier/doi/10.1088/0266-5611/28/5/055005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T08:39:38Zoai:ri.conicet.gov.ar:11336/273855instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 08:39:39.023CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Regularization methods for ill-posed problems in multiple Hilbert scales |
| title |
Regularization methods for ill-posed problems in multiple Hilbert scales |
| spellingShingle |
Regularization methods for ill-posed problems in multiple Hilbert scales Mazzieri, Gisela Luciana REGULARIZATION MULTIPLE HILBERT SCALES |
| title_short |
Regularization methods for ill-posed problems in multiple Hilbert scales |
| title_full |
Regularization methods for ill-posed problems in multiple Hilbert scales |
| title_fullStr |
Regularization methods for ill-posed problems in multiple Hilbert scales |
| title_full_unstemmed |
Regularization methods for ill-posed problems in multiple Hilbert scales |
| title_sort |
Regularization methods for ill-posed problems in multiple Hilbert scales |
| dc.creator.none.fl_str_mv |
Mazzieri, Gisela Luciana Spies, Ruben Daniel |
| author |
Mazzieri, Gisela Luciana |
| author_facet |
Mazzieri, Gisela Luciana Spies, Ruben Daniel |
| author_role |
author |
| author2 |
Spies, Ruben Daniel |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
REGULARIZATION MULTIPLE HILBERT SCALES |
| topic |
REGULARIZATION MULTIPLE HILBERT SCALES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Several convergence results in Hilbert scales under different source conditions are proved and orders of convergence and optimal orders of convergence are derived. Also, relations between those source conditions are proved. The concept of a multiple Hilbert scale on a product space is introduced, and regularization methods on these scales are defined, both for the case of a single observation and for the case of multiple observations. In the latter case, it is shown how vector-valued regularization functions in these multiple Hilbert scales can be used. In all cases, convergence is proved and orders and optimal orders of convergence are shown. Finally, some potential applications and open problems are discussed. Fil: Mazzieri, Gisela Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Nacional del Litoral. Facultad de Bioquimica y Ciencias Biologicas. Departamento de Matematicas; Argentina Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina |
| description |
Several convergence results in Hilbert scales under different source conditions are proved and orders of convergence and optimal orders of convergence are derived. Also, relations between those source conditions are proved. The concept of a multiple Hilbert scale on a product space is introduced, and regularization methods on these scales are defined, both for the case of a single observation and for the case of multiple observations. In the latter case, it is shown how vector-valued regularization functions in these multiple Hilbert scales can be used. In all cases, convergence is proved and orders and optimal orders of convergence are shown. Finally, some potential applications and open problems are discussed. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/273855 Mazzieri, Gisela Luciana; Spies, Ruben Daniel; Regularization methods for ill-posed problems in multiple Hilbert scales; IOP Publishing; Inverse Problems; 28; 5; 5-2012; 1-30 0266-5611 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/273855 |
| identifier_str_mv |
Mazzieri, Gisela Luciana; Spies, Ruben Daniel; Regularization methods for ill-posed problems in multiple Hilbert scales; IOP Publishing; Inverse Problems; 28; 5; 5-2012; 1-30 0266-5611 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/0266-5611/28/5/055005 info:eu-repo/semantics/altIdentifier/doi/10.1088/0266-5611/28/5/055005 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
IOP Publishing |
| publisher.none.fl_str_mv |
IOP Publishing |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1849872354408136704 |
| score |
13.011256 |