Regularization of Inverse Ill-Posed Problems with General Penalizing Terms: Applications to Image Restoration
- Autores
- Mazzieri, Gisela Luciana; Spies, Ruben Daniel; Temperini, Karina Guadalupe
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Tikhonov-Phillips method is widely used for regularizing ill-posed problems due to the simplicity of its formulation as an optimization problem. The use of different penalizers in the functionals associated to the corresponding optimization problems has originated a few other methods which can be considered as "variants" of the traditional Tikhonov-Phillips method of order zero. Such is the case for instance of the Tikhonov-Phillips method of order one, the total variation regularization method, etc. The purpose of this article is twofold. First we study the problem of determining general sufficient conditions on the penalizers in generalized Tikhonov-Phillips functionals which guarantee existence and uniqueness of minimizers, in such a way that finding such minimizers constitutes a regularization method, that is, in such a way that these minimizers approximate, as the regularization parameter tend to 0+, a least squares solution of the problem. Secondly we also study the problem of characterizing those limiting least square solutions in terms of properties of the penalizers and finnd conditions which guarantee that the regularization method thus defined is stable under different types of perturbations. Finally, several examples with different penalizers are presented and a few numerical results in an image restoration problem are shown which better illustrate the results.
Fil: Mazzieri, Gisela Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Temperini, Karina Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
Inverse problem
Ill-Posed
Regularization
Tikhonov-Phillips - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/75188
Ver los metadatos del registro completo
id |
CONICETDig_ada7301f311735d7aa7fafaf96e43ab5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/75188 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Regularization of Inverse Ill-Posed Problems with General Penalizing Terms: Applications to Image RestorationMazzieri, Gisela LucianaSpies, Ruben DanielTemperini, Karina GuadalupeInverse problemIll-PosedRegularizationTikhonov-Phillipshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The Tikhonov-Phillips method is widely used for regularizing ill-posed problems due to the simplicity of its formulation as an optimization problem. The use of different penalizers in the functionals associated to the corresponding optimization problems has originated a few other methods which can be considered as "variants" of the traditional Tikhonov-Phillips method of order zero. Such is the case for instance of the Tikhonov-Phillips method of order one, the total variation regularization method, etc. The purpose of this article is twofold. First we study the problem of determining general sufficient conditions on the penalizers in generalized Tikhonov-Phillips functionals which guarantee existence and uniqueness of minimizers, in such a way that finding such minimizers constitutes a regularization method, that is, in such a way that these minimizers approximate, as the regularization parameter tend to 0+, a least squares solution of the problem. Secondly we also study the problem of characterizing those limiting least square solutions in terms of properties of the penalizers and finnd conditions which guarantee that the regularization method thus defined is stable under different types of perturbations. Finally, several examples with different penalizers are presented and a few numerical results in an image restoration problem are shown which better illustrate the results.Fil: Mazzieri, Gisela Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Temperini, Karina Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaAsociación Argentina de Mecánica Computacional2010-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/75188Mazzieri, Gisela Luciana; Spies, Ruben Daniel; Temperini, Karina Guadalupe; Regularization of Inverse Ill-Posed Problems with General Penalizing Terms: Applications to Image Restoration; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; 29; 11-2010; 6275-62832591-3522CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.amcaonline.org.ar/ojs/index.php/mc/article/viewFile/3448/3365info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:03:52Zoai:ri.conicet.gov.ar:11336/75188instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:03:52.632CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Regularization of Inverse Ill-Posed Problems with General Penalizing Terms: Applications to Image Restoration |
title |
Regularization of Inverse Ill-Posed Problems with General Penalizing Terms: Applications to Image Restoration |
spellingShingle |
Regularization of Inverse Ill-Posed Problems with General Penalizing Terms: Applications to Image Restoration Mazzieri, Gisela Luciana Inverse problem Ill-Posed Regularization Tikhonov-Phillips |
title_short |
Regularization of Inverse Ill-Posed Problems with General Penalizing Terms: Applications to Image Restoration |
title_full |
Regularization of Inverse Ill-Posed Problems with General Penalizing Terms: Applications to Image Restoration |
title_fullStr |
Regularization of Inverse Ill-Posed Problems with General Penalizing Terms: Applications to Image Restoration |
title_full_unstemmed |
Regularization of Inverse Ill-Posed Problems with General Penalizing Terms: Applications to Image Restoration |
title_sort |
Regularization of Inverse Ill-Posed Problems with General Penalizing Terms: Applications to Image Restoration |
dc.creator.none.fl_str_mv |
Mazzieri, Gisela Luciana Spies, Ruben Daniel Temperini, Karina Guadalupe |
author |
Mazzieri, Gisela Luciana |
author_facet |
Mazzieri, Gisela Luciana Spies, Ruben Daniel Temperini, Karina Guadalupe |
author_role |
author |
author2 |
Spies, Ruben Daniel Temperini, Karina Guadalupe |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Inverse problem Ill-Posed Regularization Tikhonov-Phillips |
topic |
Inverse problem Ill-Posed Regularization Tikhonov-Phillips |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Tikhonov-Phillips method is widely used for regularizing ill-posed problems due to the simplicity of its formulation as an optimization problem. The use of different penalizers in the functionals associated to the corresponding optimization problems has originated a few other methods which can be considered as "variants" of the traditional Tikhonov-Phillips method of order zero. Such is the case for instance of the Tikhonov-Phillips method of order one, the total variation regularization method, etc. The purpose of this article is twofold. First we study the problem of determining general sufficient conditions on the penalizers in generalized Tikhonov-Phillips functionals which guarantee existence and uniqueness of minimizers, in such a way that finding such minimizers constitutes a regularization method, that is, in such a way that these minimizers approximate, as the regularization parameter tend to 0+, a least squares solution of the problem. Secondly we also study the problem of characterizing those limiting least square solutions in terms of properties of the penalizers and finnd conditions which guarantee that the regularization method thus defined is stable under different types of perturbations. Finally, several examples with different penalizers are presented and a few numerical results in an image restoration problem are shown which better illustrate the results. Fil: Mazzieri, Gisela Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Temperini, Karina Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
The Tikhonov-Phillips method is widely used for regularizing ill-posed problems due to the simplicity of its formulation as an optimization problem. The use of different penalizers in the functionals associated to the corresponding optimization problems has originated a few other methods which can be considered as "variants" of the traditional Tikhonov-Phillips method of order zero. Such is the case for instance of the Tikhonov-Phillips method of order one, the total variation regularization method, etc. The purpose of this article is twofold. First we study the problem of determining general sufficient conditions on the penalizers in generalized Tikhonov-Phillips functionals which guarantee existence and uniqueness of minimizers, in such a way that finding such minimizers constitutes a regularization method, that is, in such a way that these minimizers approximate, as the regularization parameter tend to 0+, a least squares solution of the problem. Secondly we also study the problem of characterizing those limiting least square solutions in terms of properties of the penalizers and finnd conditions which guarantee that the regularization method thus defined is stable under different types of perturbations. Finally, several examples with different penalizers are presented and a few numerical results in an image restoration problem are shown which better illustrate the results. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/75188 Mazzieri, Gisela Luciana; Spies, Ruben Daniel; Temperini, Karina Guadalupe; Regularization of Inverse Ill-Posed Problems with General Penalizing Terms: Applications to Image Restoration; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; 29; 11-2010; 6275-6283 2591-3522 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/75188 |
identifier_str_mv |
Mazzieri, Gisela Luciana; Spies, Ruben Daniel; Temperini, Karina Guadalupe; Regularization of Inverse Ill-Posed Problems with General Penalizing Terms: Applications to Image Restoration; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; 29; 11-2010; 6275-6283 2591-3522 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.amcaonline.org.ar/ojs/index.php/mc/article/viewFile/3448/3365 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980112998334464 |
score |
12.993085 |