Mixed spatially varying L2-BV regularization of inverse ill-posed problems

Autores
Mazzieri, Gisela Luciana; Spies, Ruben Daniel; Temperini, Karina Guadalupe
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Several generalizations of the traditional Tikhonov-Phillips regularization method have been proposed during the last two decades. Many of these generalizations are based upon inducing stability throughout the use of different penalizers which allow the capturing of diverse properties of the exact solution (e.g. edges, discontinuities, borders, etc.). However, in some problems in which it is known that the regularity of the exact solution is heterogeneous and/or anisotropic, it is reasonable to think that a much better option could be the simultaneous use of two or more penalizers of different nature. Such is the case, for instance, in some image restoration problems in which preservation of edges, borders or discontinuities is an important matter. In this work we present some results on the simultaneous use of penalizers of L2 and of bounded variation (BV) type. For particular cases, existence and uniqueness results are proved. Open problems are discussed and results to signal restoration problems are presented.
Fil: Mazzieri, Gisela Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Temperini, Karina Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Materia
Ill-Posed
Inverse Problem
Regularization
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/67966

id CONICETDig_a9fa8936720f7827abfb0b9faacd1481
oai_identifier_str oai:ri.conicet.gov.ar:11336/67966
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Mixed spatially varying L2-BV regularization of inverse ill-posed problemsMazzieri, Gisela LucianaSpies, Ruben DanielTemperini, Karina GuadalupeIll-PosedInverse ProblemRegularizationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Several generalizations of the traditional Tikhonov-Phillips regularization method have been proposed during the last two decades. Many of these generalizations are based upon inducing stability throughout the use of different penalizers which allow the capturing of diverse properties of the exact solution (e.g. edges, discontinuities, borders, etc.). However, in some problems in which it is known that the regularity of the exact solution is heterogeneous and/or anisotropic, it is reasonable to think that a much better option could be the simultaneous use of two or more penalizers of different nature. Such is the case, for instance, in some image restoration problems in which preservation of edges, borders or discontinuities is an important matter. In this work we present some results on the simultaneous use of penalizers of L2 and of bounded variation (BV) type. For particular cases, existence and uniqueness results are proved. Open problems are discussed and results to signal restoration problems are presented.Fil: Mazzieri, Gisela Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Temperini, Karina Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaDe Gruyter2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67966Mazzieri, Gisela Luciana; Spies, Ruben Daniel; Temperini, Karina Guadalupe; Mixed spatially varying L2-BV regularization of inverse ill-posed problems; De Gruyter; Journal Of Inverse And Ill-posed Problems; 23; 6; 12-2015; 571-5850928-0219CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/jiipinfo:eu-repo/semantics/altIdentifier/doi/10.1515/jiip-2014-0034info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:16Zoai:ri.conicet.gov.ar:11336/67966instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:17.048CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Mixed spatially varying L2-BV regularization of inverse ill-posed problems
title Mixed spatially varying L2-BV regularization of inverse ill-posed problems
spellingShingle Mixed spatially varying L2-BV regularization of inverse ill-posed problems
Mazzieri, Gisela Luciana
Ill-Posed
Inverse Problem
Regularization
title_short Mixed spatially varying L2-BV regularization of inverse ill-posed problems
title_full Mixed spatially varying L2-BV regularization of inverse ill-posed problems
title_fullStr Mixed spatially varying L2-BV regularization of inverse ill-posed problems
title_full_unstemmed Mixed spatially varying L2-BV regularization of inverse ill-posed problems
title_sort Mixed spatially varying L2-BV regularization of inverse ill-posed problems
dc.creator.none.fl_str_mv Mazzieri, Gisela Luciana
Spies, Ruben Daniel
Temperini, Karina Guadalupe
author Mazzieri, Gisela Luciana
author_facet Mazzieri, Gisela Luciana
Spies, Ruben Daniel
Temperini, Karina Guadalupe
author_role author
author2 Spies, Ruben Daniel
Temperini, Karina Guadalupe
author2_role author
author
dc.subject.none.fl_str_mv Ill-Posed
Inverse Problem
Regularization
topic Ill-Posed
Inverse Problem
Regularization
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Several generalizations of the traditional Tikhonov-Phillips regularization method have been proposed during the last two decades. Many of these generalizations are based upon inducing stability throughout the use of different penalizers which allow the capturing of diverse properties of the exact solution (e.g. edges, discontinuities, borders, etc.). However, in some problems in which it is known that the regularity of the exact solution is heterogeneous and/or anisotropic, it is reasonable to think that a much better option could be the simultaneous use of two or more penalizers of different nature. Such is the case, for instance, in some image restoration problems in which preservation of edges, borders or discontinuities is an important matter. In this work we present some results on the simultaneous use of penalizers of L2 and of bounded variation (BV) type. For particular cases, existence and uniqueness results are proved. Open problems are discussed and results to signal restoration problems are presented.
Fil: Mazzieri, Gisela Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Temperini, Karina Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
description Several generalizations of the traditional Tikhonov-Phillips regularization method have been proposed during the last two decades. Many of these generalizations are based upon inducing stability throughout the use of different penalizers which allow the capturing of diverse properties of the exact solution (e.g. edges, discontinuities, borders, etc.). However, in some problems in which it is known that the regularity of the exact solution is heterogeneous and/or anisotropic, it is reasonable to think that a much better option could be the simultaneous use of two or more penalizers of different nature. Such is the case, for instance, in some image restoration problems in which preservation of edges, borders or discontinuities is an important matter. In this work we present some results on the simultaneous use of penalizers of L2 and of bounded variation (BV) type. For particular cases, existence and uniqueness results are proved. Open problems are discussed and results to signal restoration problems are presented.
publishDate 2015
dc.date.none.fl_str_mv 2015-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/67966
Mazzieri, Gisela Luciana; Spies, Ruben Daniel; Temperini, Karina Guadalupe; Mixed spatially varying L2-BV regularization of inverse ill-posed problems; De Gruyter; Journal Of Inverse And Ill-posed Problems; 23; 6; 12-2015; 571-585
0928-0219
CONICET Digital
CONICET
url http://hdl.handle.net/11336/67966
identifier_str_mv Mazzieri, Gisela Luciana; Spies, Ruben Daniel; Temperini, Karina Guadalupe; Mixed spatially varying L2-BV regularization of inverse ill-posed problems; De Gruyter; Journal Of Inverse And Ill-posed Problems; 23; 6; 12-2015; 571-585
0928-0219
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/jiip
info:eu-repo/semantics/altIdentifier/doi/10.1515/jiip-2014-0034
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv De Gruyter
publisher.none.fl_str_mv De Gruyter
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613691838824448
score 13.070432