Mixed spatially varying L2-BV regularization of inverse ill-posed problems
- Autores
- Mazzieri, Gisela Luciana; Spies, Ruben Daniel; Temperini, Karina Guadalupe
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Several generalizations of the traditional Tikhonov-Phillips regularization method have been proposed during the last two decades. Many of these generalizations are based upon inducing stability throughout the use of different penalizers which allow the capturing of diverse properties of the exact solution (e.g. edges, discontinuities, borders, etc.). However, in some problems in which it is known that the regularity of the exact solution is heterogeneous and/or anisotropic, it is reasonable to think that a much better option could be the simultaneous use of two or more penalizers of different nature. Such is the case, for instance, in some image restoration problems in which preservation of edges, borders or discontinuities is an important matter. In this work we present some results on the simultaneous use of penalizers of L2 and of bounded variation (BV) type. For particular cases, existence and uniqueness results are proved. Open problems are discussed and results to signal restoration problems are presented.
Fil: Mazzieri, Gisela Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Temperini, Karina Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
Ill-Posed
Inverse Problem
Regularization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/67966
Ver los metadatos del registro completo
id |
CONICETDig_a9fa8936720f7827abfb0b9faacd1481 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/67966 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Mixed spatially varying L2-BV regularization of inverse ill-posed problemsMazzieri, Gisela LucianaSpies, Ruben DanielTemperini, Karina GuadalupeIll-PosedInverse ProblemRegularizationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Several generalizations of the traditional Tikhonov-Phillips regularization method have been proposed during the last two decades. Many of these generalizations are based upon inducing stability throughout the use of different penalizers which allow the capturing of diverse properties of the exact solution (e.g. edges, discontinuities, borders, etc.). However, in some problems in which it is known that the regularity of the exact solution is heterogeneous and/or anisotropic, it is reasonable to think that a much better option could be the simultaneous use of two or more penalizers of different nature. Such is the case, for instance, in some image restoration problems in which preservation of edges, borders or discontinuities is an important matter. In this work we present some results on the simultaneous use of penalizers of L2 and of bounded variation (BV) type. For particular cases, existence and uniqueness results are proved. Open problems are discussed and results to signal restoration problems are presented.Fil: Mazzieri, Gisela Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Temperini, Karina Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaDe Gruyter2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67966Mazzieri, Gisela Luciana; Spies, Ruben Daniel; Temperini, Karina Guadalupe; Mixed spatially varying L2-BV regularization of inverse ill-posed problems; De Gruyter; Journal Of Inverse And Ill-posed Problems; 23; 6; 12-2015; 571-5850928-0219CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/jiipinfo:eu-repo/semantics/altIdentifier/doi/10.1515/jiip-2014-0034info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:16Zoai:ri.conicet.gov.ar:11336/67966instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:17.048CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Mixed spatially varying L2-BV regularization of inverse ill-posed problems |
title |
Mixed spatially varying L2-BV regularization of inverse ill-posed problems |
spellingShingle |
Mixed spatially varying L2-BV regularization of inverse ill-posed problems Mazzieri, Gisela Luciana Ill-Posed Inverse Problem Regularization |
title_short |
Mixed spatially varying L2-BV regularization of inverse ill-posed problems |
title_full |
Mixed spatially varying L2-BV regularization of inverse ill-posed problems |
title_fullStr |
Mixed spatially varying L2-BV regularization of inverse ill-posed problems |
title_full_unstemmed |
Mixed spatially varying L2-BV regularization of inverse ill-posed problems |
title_sort |
Mixed spatially varying L2-BV regularization of inverse ill-posed problems |
dc.creator.none.fl_str_mv |
Mazzieri, Gisela Luciana Spies, Ruben Daniel Temperini, Karina Guadalupe |
author |
Mazzieri, Gisela Luciana |
author_facet |
Mazzieri, Gisela Luciana Spies, Ruben Daniel Temperini, Karina Guadalupe |
author_role |
author |
author2 |
Spies, Ruben Daniel Temperini, Karina Guadalupe |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ill-Posed Inverse Problem Regularization |
topic |
Ill-Posed Inverse Problem Regularization |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Several generalizations of the traditional Tikhonov-Phillips regularization method have been proposed during the last two decades. Many of these generalizations are based upon inducing stability throughout the use of different penalizers which allow the capturing of diverse properties of the exact solution (e.g. edges, discontinuities, borders, etc.). However, in some problems in which it is known that the regularity of the exact solution is heterogeneous and/or anisotropic, it is reasonable to think that a much better option could be the simultaneous use of two or more penalizers of different nature. Such is the case, for instance, in some image restoration problems in which preservation of edges, borders or discontinuities is an important matter. In this work we present some results on the simultaneous use of penalizers of L2 and of bounded variation (BV) type. For particular cases, existence and uniqueness results are proved. Open problems are discussed and results to signal restoration problems are presented. Fil: Mazzieri, Gisela Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Temperini, Karina Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
Several generalizations of the traditional Tikhonov-Phillips regularization method have been proposed during the last two decades. Many of these generalizations are based upon inducing stability throughout the use of different penalizers which allow the capturing of diverse properties of the exact solution (e.g. edges, discontinuities, borders, etc.). However, in some problems in which it is known that the regularity of the exact solution is heterogeneous and/or anisotropic, it is reasonable to think that a much better option could be the simultaneous use of two or more penalizers of different nature. Such is the case, for instance, in some image restoration problems in which preservation of edges, borders or discontinuities is an important matter. In this work we present some results on the simultaneous use of penalizers of L2 and of bounded variation (BV) type. For particular cases, existence and uniqueness results are proved. Open problems are discussed and results to signal restoration problems are presented. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/67966 Mazzieri, Gisela Luciana; Spies, Ruben Daniel; Temperini, Karina Guadalupe; Mixed spatially varying L2-BV regularization of inverse ill-posed problems; De Gruyter; Journal Of Inverse And Ill-posed Problems; 23; 6; 12-2015; 571-585 0928-0219 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/67966 |
identifier_str_mv |
Mazzieri, Gisela Luciana; Spies, Ruben Daniel; Temperini, Karina Guadalupe; Mixed spatially varying L2-BV regularization of inverse ill-posed problems; De Gruyter; Journal Of Inverse And Ill-posed Problems; 23; 6; 12-2015; 571-585 0928-0219 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/jiip info:eu-repo/semantics/altIdentifier/doi/10.1515/jiip-2014-0034 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613691838824448 |
score |
13.070432 |