Anisotropic BV–L2 regularization of linear inverse ill-posed problems
- Autores
- Mazzieri, Gisela Luciana; Temperini, Karina Guadalupe; Spies, Ruben Daniel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- During the last two decades several generalizations of the traditional Tikhonov-Phillips regularization method for solving inverse ill-posed problems have been proposed. Many of these variants consist essentially of modifications on the penalizing term, which force certain features in the obtained regularized solution ([11,18]). If it is known that the regularity of the exact solution is inhomogeneous it is often desirable the use of mixed, spatially adaptive methods ([7,12]). These methods are also highly suitable when the preservation of edges is an important issue, since they allow for the inclusion of anisotropic penalizers for border detection ([20]). In this work we propose the use of a penalizer resulting from the convex spatially-adaptive combination of a classic L2penalizer and an anisotropic bounded variation seminorm. Results on existence and uniqueness of minimizers of the corresponding Tikhonov-Phillips functional are presented. Results on the stability of those minimizers with respect to perturbations in the data, in the regularization parameter and in the operator are also established. Applications to image restoration problems are shown.
Fil: Mazzieri, Gisela Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Temperini, Karina Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
Anisotropy
Bounded Variation
Inverse Problems
Tikhonov&Ndash;Phillips - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/63501
Ver los metadatos del registro completo
id |
CONICETDig_351c3b798e6fae19f09fdc62c73b4c31 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/63501 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Anisotropic BV–L2 regularization of linear inverse ill-posed problemsMazzieri, Gisela LucianaTemperini, Karina GuadalupeSpies, Ruben DanielAnisotropyBounded VariationInverse ProblemsTikhonov&Ndash;Phillipshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1During the last two decades several generalizations of the traditional Tikhonov-Phillips regularization method for solving inverse ill-posed problems have been proposed. Many of these variants consist essentially of modifications on the penalizing term, which force certain features in the obtained regularized solution ([11,18]). If it is known that the regularity of the exact solution is inhomogeneous it is often desirable the use of mixed, spatially adaptive methods ([7,12]). These methods are also highly suitable when the preservation of edges is an important issue, since they allow for the inclusion of anisotropic penalizers for border detection ([20]). In this work we propose the use of a penalizer resulting from the convex spatially-adaptive combination of a classic L2penalizer and an anisotropic bounded variation seminorm. Results on existence and uniqueness of minimizers of the corresponding Tikhonov-Phillips functional are presented. Results on the stability of those minimizers with respect to perturbations in the data, in the regularization parameter and in the operator are also established. Applications to image restoration problems are shown.Fil: Mazzieri, Gisela Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Temperini, Karina Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaAcademic Press Inc Elsevier Science2017-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/63501Mazzieri, Gisela Luciana; Temperini, Karina Guadalupe; Spies, Ruben Daniel; Anisotropic BV–L2 regularization of linear inverse ill-posed problems; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 450; 1; 6-2017; 427-4430022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2017.01.005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:05:39Zoai:ri.conicet.gov.ar:11336/63501instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:05:39.735CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Anisotropic BV–L2 regularization of linear inverse ill-posed problems |
title |
Anisotropic BV–L2 regularization of linear inverse ill-posed problems |
spellingShingle |
Anisotropic BV–L2 regularization of linear inverse ill-posed problems Mazzieri, Gisela Luciana Anisotropy Bounded Variation Inverse Problems Tikhonov&Ndash;Phillips |
title_short |
Anisotropic BV–L2 regularization of linear inverse ill-posed problems |
title_full |
Anisotropic BV–L2 regularization of linear inverse ill-posed problems |
title_fullStr |
Anisotropic BV–L2 regularization of linear inverse ill-posed problems |
title_full_unstemmed |
Anisotropic BV–L2 regularization of linear inverse ill-posed problems |
title_sort |
Anisotropic BV–L2 regularization of linear inverse ill-posed problems |
dc.creator.none.fl_str_mv |
Mazzieri, Gisela Luciana Temperini, Karina Guadalupe Spies, Ruben Daniel |
author |
Mazzieri, Gisela Luciana |
author_facet |
Mazzieri, Gisela Luciana Temperini, Karina Guadalupe Spies, Ruben Daniel |
author_role |
author |
author2 |
Temperini, Karina Guadalupe Spies, Ruben Daniel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Anisotropy Bounded Variation Inverse Problems Tikhonov&Ndash;Phillips |
topic |
Anisotropy Bounded Variation Inverse Problems Tikhonov&Ndash;Phillips |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
During the last two decades several generalizations of the traditional Tikhonov-Phillips regularization method for solving inverse ill-posed problems have been proposed. Many of these variants consist essentially of modifications on the penalizing term, which force certain features in the obtained regularized solution ([11,18]). If it is known that the regularity of the exact solution is inhomogeneous it is often desirable the use of mixed, spatially adaptive methods ([7,12]). These methods are also highly suitable when the preservation of edges is an important issue, since they allow for the inclusion of anisotropic penalizers for border detection ([20]). In this work we propose the use of a penalizer resulting from the convex spatially-adaptive combination of a classic L2penalizer and an anisotropic bounded variation seminorm. Results on existence and uniqueness of minimizers of the corresponding Tikhonov-Phillips functional are presented. Results on the stability of those minimizers with respect to perturbations in the data, in the regularization parameter and in the operator are also established. Applications to image restoration problems are shown. Fil: Mazzieri, Gisela Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Temperini, Karina Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
During the last two decades several generalizations of the traditional Tikhonov-Phillips regularization method for solving inverse ill-posed problems have been proposed. Many of these variants consist essentially of modifications on the penalizing term, which force certain features in the obtained regularized solution ([11,18]). If it is known that the regularity of the exact solution is inhomogeneous it is often desirable the use of mixed, spatially adaptive methods ([7,12]). These methods are also highly suitable when the preservation of edges is an important issue, since they allow for the inclusion of anisotropic penalizers for border detection ([20]). In this work we propose the use of a penalizer resulting from the convex spatially-adaptive combination of a classic L2penalizer and an anisotropic bounded variation seminorm. Results on existence and uniqueness of minimizers of the corresponding Tikhonov-Phillips functional are presented. Results on the stability of those minimizers with respect to perturbations in the data, in the regularization parameter and in the operator are also established. Applications to image restoration problems are shown. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/63501 Mazzieri, Gisela Luciana; Temperini, Karina Guadalupe; Spies, Ruben Daniel; Anisotropic BV–L2 regularization of linear inverse ill-posed problems; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 450; 1; 6-2017; 427-443 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/63501 |
identifier_str_mv |
Mazzieri, Gisela Luciana; Temperini, Karina Guadalupe; Spies, Ruben Daniel; Anisotropic BV–L2 regularization of linear inverse ill-posed problems; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 450; 1; 6-2017; 427-443 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2017.01.005 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980215119151104 |
score |
12.993085 |