Weighted maximal inequalities on hyperbolic spaces
- Autores
- Antezana, Jorge Abel; Ombrosi, Sheldy Javier
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we study the singularity of the (centered) maximal operator in the hyperbolic spaces. With this aim, we changed the density of the underlying measure to avoid possible compensations due to the symmetries of the hyperbolic measure. Our starting point is a variant of the well-known endpoint Fefferman-Stein inequality for the centered Hardy-Littlewood maximal function. This inequality generalizes, in the hyperbolic setting, the weak estimates obtained by Strömberg (1981) [17] who answered a question posed by Stein and Wainger (1978) [16]. Our approach is based on a combination of geometrical arguments and the techniques used in the discrete setting of regular trees by Naor and Tao (2010) [11]. This variant of the Fefferman-Stein inequality paves the road to weighted estimates for the maximal function for . On the one hand, we show that the classical conditions are not the right ones in this setting. On the other hand, we provide sharp sufficient conditions for weighted weak and strong type boundedness of the centered maximal function, when . The sharpness is in the sense that, given , we can construct a weight satisfying our sufficient condition for that p, and so it satisfies the weak type inequality, but the strong type inequality fails. In particular, the weak type fails as well for every .
Fil: Antezana, Jorge Abel. Universidad de Barcelona; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
WEIGHTS
HYPERBOLIC
MAXIMAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/277587
Ver los metadatos del registro completo
| id |
CONICETDig_02061955e363ec6f1d06282222cfc5a9 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/277587 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Weighted maximal inequalities on hyperbolic spacesAntezana, Jorge AbelOmbrosi, Sheldy JavierWEIGHTSHYPERBOLICMAXIMALhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we study the singularity of the (centered) maximal operator in the hyperbolic spaces. With this aim, we changed the density of the underlying measure to avoid possible compensations due to the symmetries of the hyperbolic measure. Our starting point is a variant of the well-known endpoint Fefferman-Stein inequality for the centered Hardy-Littlewood maximal function. This inequality generalizes, in the hyperbolic setting, the weak estimates obtained by Strömberg (1981) [17] who answered a question posed by Stein and Wainger (1978) [16]. Our approach is based on a combination of geometrical arguments and the techniques used in the discrete setting of regular trees by Naor and Tao (2010) [11]. This variant of the Fefferman-Stein inequality paves the road to weighted estimates for the maximal function for . On the one hand, we show that the classical conditions are not the right ones in this setting. On the other hand, we provide sharp sufficient conditions for weighted weak and strong type boundedness of the centered maximal function, when . The sharpness is in the sense that, given , we can construct a weight satisfying our sufficient condition for that p, and so it satisfies the weak type inequality, but the strong type inequality fails. In particular, the weak type fails as well for every .Fil: Antezana, Jorge Abel. Universidad de Barcelona; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaAcademic Press Inc Elsevier Science2025-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/277587Antezana, Jorge Abel; Ombrosi, Sheldy Javier; Weighted maximal inequalities on hyperbolic spaces; Academic Press Inc Elsevier Science; Advances in Mathematics; 482; 110641; 12-2025; 1-230001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2025.110641info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870825005390info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:26:51Zoai:ri.conicet.gov.ar:11336/277587instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:26:51.721CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Weighted maximal inequalities on hyperbolic spaces |
| title |
Weighted maximal inequalities on hyperbolic spaces |
| spellingShingle |
Weighted maximal inequalities on hyperbolic spaces Antezana, Jorge Abel WEIGHTS HYPERBOLIC MAXIMAL |
| title_short |
Weighted maximal inequalities on hyperbolic spaces |
| title_full |
Weighted maximal inequalities on hyperbolic spaces |
| title_fullStr |
Weighted maximal inequalities on hyperbolic spaces |
| title_full_unstemmed |
Weighted maximal inequalities on hyperbolic spaces |
| title_sort |
Weighted maximal inequalities on hyperbolic spaces |
| dc.creator.none.fl_str_mv |
Antezana, Jorge Abel Ombrosi, Sheldy Javier |
| author |
Antezana, Jorge Abel |
| author_facet |
Antezana, Jorge Abel Ombrosi, Sheldy Javier |
| author_role |
author |
| author2 |
Ombrosi, Sheldy Javier |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
WEIGHTS HYPERBOLIC MAXIMAL |
| topic |
WEIGHTS HYPERBOLIC MAXIMAL |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this work we study the singularity of the (centered) maximal operator in the hyperbolic spaces. With this aim, we changed the density of the underlying measure to avoid possible compensations due to the symmetries of the hyperbolic measure. Our starting point is a variant of the well-known endpoint Fefferman-Stein inequality for the centered Hardy-Littlewood maximal function. This inequality generalizes, in the hyperbolic setting, the weak estimates obtained by Strömberg (1981) [17] who answered a question posed by Stein and Wainger (1978) [16]. Our approach is based on a combination of geometrical arguments and the techniques used in the discrete setting of regular trees by Naor and Tao (2010) [11]. This variant of the Fefferman-Stein inequality paves the road to weighted estimates for the maximal function for . On the one hand, we show that the classical conditions are not the right ones in this setting. On the other hand, we provide sharp sufficient conditions for weighted weak and strong type boundedness of the centered maximal function, when . The sharpness is in the sense that, given , we can construct a weight satisfying our sufficient condition for that p, and so it satisfies the weak type inequality, but the strong type inequality fails. In particular, the weak type fails as well for every . Fil: Antezana, Jorge Abel. Universidad de Barcelona; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
| description |
In this work we study the singularity of the (centered) maximal operator in the hyperbolic spaces. With this aim, we changed the density of the underlying measure to avoid possible compensations due to the symmetries of the hyperbolic measure. Our starting point is a variant of the well-known endpoint Fefferman-Stein inequality for the centered Hardy-Littlewood maximal function. This inequality generalizes, in the hyperbolic setting, the weak estimates obtained by Strömberg (1981) [17] who answered a question posed by Stein and Wainger (1978) [16]. Our approach is based on a combination of geometrical arguments and the techniques used in the discrete setting of regular trees by Naor and Tao (2010) [11]. This variant of the Fefferman-Stein inequality paves the road to weighted estimates for the maximal function for . On the one hand, we show that the classical conditions are not the right ones in this setting. On the other hand, we provide sharp sufficient conditions for weighted weak and strong type boundedness of the centered maximal function, when . The sharpness is in the sense that, given , we can construct a weight satisfying our sufficient condition for that p, and so it satisfies the weak type inequality, but the strong type inequality fails. In particular, the weak type fails as well for every . |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/277587 Antezana, Jorge Abel; Ombrosi, Sheldy Javier; Weighted maximal inequalities on hyperbolic spaces; Academic Press Inc Elsevier Science; Advances in Mathematics; 482; 110641; 12-2025; 1-23 0001-8708 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/277587 |
| identifier_str_mv |
Antezana, Jorge Abel; Ombrosi, Sheldy Javier; Weighted maximal inequalities on hyperbolic spaces; Academic Press Inc Elsevier Science; Advances in Mathematics; 482; 110641; 12-2025; 1-23 0001-8708 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2025.110641 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870825005390 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335141927518208 |
| score |
12.952241 |