Weighted maximal inequalities on hyperbolic spaces

Autores
Antezana, Jorge Abel; Ombrosi, Sheldy Javier
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we study the singularity of the (centered) maximal operator in the hyperbolic spaces. With this aim, we changed the density of the underlying measure to avoid possible compensations due to the symmetries of the hyperbolic measure. Our starting point is a variant of the well-known endpoint Fefferman-Stein inequality for the centered Hardy-Littlewood maximal function. This inequality generalizes, in the hyperbolic setting, the weak estimates obtained by Strömberg (1981) [17] who answered a question posed by Stein and Wainger (1978) [16]. Our approach is based on a combination of geometrical arguments and the techniques used in the discrete setting of regular trees by Naor and Tao (2010) [11]. This variant of the Fefferman-Stein inequality paves the road to weighted estimates for the maximal function for . On the one hand, we show that the classical conditions are not the right ones in this setting. On the other hand, we provide sharp sufficient conditions for weighted weak and strong type boundedness of the centered maximal function, when . The sharpness is in the sense that, given , we can construct a weight satisfying our sufficient condition for that p, and so it satisfies the weak type inequality, but the strong type inequality fails. In particular, the weak type fails as well for every .
Fil: Antezana, Jorge Abel. Universidad de Barcelona; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Materia
WEIGHTS
HYPERBOLIC
MAXIMAL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/277587

id CONICETDig_02061955e363ec6f1d06282222cfc5a9
oai_identifier_str oai:ri.conicet.gov.ar:11336/277587
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Weighted maximal inequalities on hyperbolic spacesAntezana, Jorge AbelOmbrosi, Sheldy JavierWEIGHTSHYPERBOLICMAXIMALhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we study the singularity of the (centered) maximal operator in the hyperbolic spaces. With this aim, we changed the density of the underlying measure to avoid possible compensations due to the symmetries of the hyperbolic measure. Our starting point is a variant of the well-known endpoint Fefferman-Stein inequality for the centered Hardy-Littlewood maximal function. This inequality generalizes, in the hyperbolic setting, the weak estimates obtained by Strömberg (1981) [17] who answered a question posed by Stein and Wainger (1978) [16]. Our approach is based on a combination of geometrical arguments and the techniques used in the discrete setting of regular trees by Naor and Tao (2010) [11]. This variant of the Fefferman-Stein inequality paves the road to weighted estimates for the maximal function for . On the one hand, we show that the classical conditions are not the right ones in this setting. On the other hand, we provide sharp sufficient conditions for weighted weak and strong type boundedness of the centered maximal function, when . The sharpness is in the sense that, given , we can construct a weight satisfying our sufficient condition for that p, and so it satisfies the weak type inequality, but the strong type inequality fails. In particular, the weak type fails as well for every .Fil: Antezana, Jorge Abel. Universidad de Barcelona; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaAcademic Press Inc Elsevier Science2025-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/277587Antezana, Jorge Abel; Ombrosi, Sheldy Javier; Weighted maximal inequalities on hyperbolic spaces; Academic Press Inc Elsevier Science; Advances in Mathematics; 482; 110641; 12-2025; 1-230001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2025.110641info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870825005390info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:26:51Zoai:ri.conicet.gov.ar:11336/277587instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:26:51.721CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Weighted maximal inequalities on hyperbolic spaces
title Weighted maximal inequalities on hyperbolic spaces
spellingShingle Weighted maximal inequalities on hyperbolic spaces
Antezana, Jorge Abel
WEIGHTS
HYPERBOLIC
MAXIMAL
title_short Weighted maximal inequalities on hyperbolic spaces
title_full Weighted maximal inequalities on hyperbolic spaces
title_fullStr Weighted maximal inequalities on hyperbolic spaces
title_full_unstemmed Weighted maximal inequalities on hyperbolic spaces
title_sort Weighted maximal inequalities on hyperbolic spaces
dc.creator.none.fl_str_mv Antezana, Jorge Abel
Ombrosi, Sheldy Javier
author Antezana, Jorge Abel
author_facet Antezana, Jorge Abel
Ombrosi, Sheldy Javier
author_role author
author2 Ombrosi, Sheldy Javier
author2_role author
dc.subject.none.fl_str_mv WEIGHTS
HYPERBOLIC
MAXIMAL
topic WEIGHTS
HYPERBOLIC
MAXIMAL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we study the singularity of the (centered) maximal operator in the hyperbolic spaces. With this aim, we changed the density of the underlying measure to avoid possible compensations due to the symmetries of the hyperbolic measure. Our starting point is a variant of the well-known endpoint Fefferman-Stein inequality for the centered Hardy-Littlewood maximal function. This inequality generalizes, in the hyperbolic setting, the weak estimates obtained by Strömberg (1981) [17] who answered a question posed by Stein and Wainger (1978) [16]. Our approach is based on a combination of geometrical arguments and the techniques used in the discrete setting of regular trees by Naor and Tao (2010) [11]. This variant of the Fefferman-Stein inequality paves the road to weighted estimates for the maximal function for . On the one hand, we show that the classical conditions are not the right ones in this setting. On the other hand, we provide sharp sufficient conditions for weighted weak and strong type boundedness of the centered maximal function, when . The sharpness is in the sense that, given , we can construct a weight satisfying our sufficient condition for that p, and so it satisfies the weak type inequality, but the strong type inequality fails. In particular, the weak type fails as well for every .
Fil: Antezana, Jorge Abel. Universidad de Barcelona; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
description In this work we study the singularity of the (centered) maximal operator in the hyperbolic spaces. With this aim, we changed the density of the underlying measure to avoid possible compensations due to the symmetries of the hyperbolic measure. Our starting point is a variant of the well-known endpoint Fefferman-Stein inequality for the centered Hardy-Littlewood maximal function. This inequality generalizes, in the hyperbolic setting, the weak estimates obtained by Strömberg (1981) [17] who answered a question posed by Stein and Wainger (1978) [16]. Our approach is based on a combination of geometrical arguments and the techniques used in the discrete setting of regular trees by Naor and Tao (2010) [11]. This variant of the Fefferman-Stein inequality paves the road to weighted estimates for the maximal function for . On the one hand, we show that the classical conditions are not the right ones in this setting. On the other hand, we provide sharp sufficient conditions for weighted weak and strong type boundedness of the centered maximal function, when . The sharpness is in the sense that, given , we can construct a weight satisfying our sufficient condition for that p, and so it satisfies the weak type inequality, but the strong type inequality fails. In particular, the weak type fails as well for every .
publishDate 2025
dc.date.none.fl_str_mv 2025-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/277587
Antezana, Jorge Abel; Ombrosi, Sheldy Javier; Weighted maximal inequalities on hyperbolic spaces; Academic Press Inc Elsevier Science; Advances in Mathematics; 482; 110641; 12-2025; 1-23
0001-8708
CONICET Digital
CONICET
url http://hdl.handle.net/11336/277587
identifier_str_mv Antezana, Jorge Abel; Ombrosi, Sheldy Javier; Weighted maximal inequalities on hyperbolic spaces; Academic Press Inc Elsevier Science; Advances in Mathematics; 482; 110641; 12-2025; 1-23
0001-8708
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2025.110641
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870825005390
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852335141927518208
score 12.952241