Local Maximal Function and Weights in a General Setting
- Autores
- Harboure, Eleonor Ofelia; Salinas, Oscar Mario; Viviani, Beatriz Eleonora
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For a proper open set "omega" immersed in a metric space with the weak homogeneity property, and given a measure μ doubling on a certain family of balls lying “well inside” of "omega", we introduce a local maximal function and characterize the weights w for which it is bounded on L p("omega", wdμ) when 1 < p < ∞ and of weak type (1, 1). We generalize previous known results and we also present an application to interior Sobolev’s type estimates for appropriate solutions of the differential equation "delta" mu = f , satisfied in an open proper subset "omega" of Rn. Here, the data f belongs to some weighted L p space that could allow functions to increase polynomially when approaching the boundary of "omega".
Fil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Fil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina - Materia
-
Local
Maximal
Weights
Boundedness - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/9380
Ver los metadatos del registro completo
| id |
CONICETDig_033d38a75f76719542eca1f174ab19c4 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/9380 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Local Maximal Function and Weights in a General SettingHarboure, Eleonor OfeliaSalinas, Oscar MarioViviani, Beatriz EleonoraLocalMaximalWeightsBoundednesshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For a proper open set "omega" immersed in a metric space with the weak homogeneity property, and given a measure μ doubling on a certain family of balls lying “well inside” of "omega", we introduce a local maximal function and characterize the weights w for which it is bounded on L p("omega", wdμ) when 1 < p < ∞ and of weak type (1, 1). We generalize previous known results and we also present an application to interior Sobolev’s type estimates for appropriate solutions of the differential equation "delta" mu = f , satisfied in an open proper subset "omega" of Rn. Here, the data f belongs to some weighted L p space that could allow functions to increase polynomially when approaching the boundary of "omega".Fil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaFil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaFil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaSpringer2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9380Harboure, Eleonor Ofelia; Salinas, Oscar Mario; Viviani, Beatriz Eleonora; Local Maximal Function and Weights in a General Setting; Springer; Mathematische Annalen; 358; 3; 3-2014; 609-6280025-58311432-1807enginfo:eu-repo/semantics/altIdentifier/doi//10.1007/s00208-013-0973-7info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00208-013-0973-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:40:34Zoai:ri.conicet.gov.ar:11336/9380instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:40:35.159CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Local Maximal Function and Weights in a General Setting |
| title |
Local Maximal Function and Weights in a General Setting |
| spellingShingle |
Local Maximal Function and Weights in a General Setting Harboure, Eleonor Ofelia Local Maximal Weights Boundedness |
| title_short |
Local Maximal Function and Weights in a General Setting |
| title_full |
Local Maximal Function and Weights in a General Setting |
| title_fullStr |
Local Maximal Function and Weights in a General Setting |
| title_full_unstemmed |
Local Maximal Function and Weights in a General Setting |
| title_sort |
Local Maximal Function and Weights in a General Setting |
| dc.creator.none.fl_str_mv |
Harboure, Eleonor Ofelia Salinas, Oscar Mario Viviani, Beatriz Eleonora |
| author |
Harboure, Eleonor Ofelia |
| author_facet |
Harboure, Eleonor Ofelia Salinas, Oscar Mario Viviani, Beatriz Eleonora |
| author_role |
author |
| author2 |
Salinas, Oscar Mario Viviani, Beatriz Eleonora |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Local Maximal Weights Boundedness |
| topic |
Local Maximal Weights Boundedness |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
For a proper open set "omega" immersed in a metric space with the weak homogeneity property, and given a measure μ doubling on a certain family of balls lying “well inside” of "omega", we introduce a local maximal function and characterize the weights w for which it is bounded on L p("omega", wdμ) when 1 < p < ∞ and of weak type (1, 1). We generalize previous known results and we also present an application to interior Sobolev’s type estimates for appropriate solutions of the differential equation "delta" mu = f , satisfied in an open proper subset "omega" of Rn. Here, the data f belongs to some weighted L p space that could allow functions to increase polynomially when approaching the boundary of "omega". Fil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina Fil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina |
| description |
For a proper open set "omega" immersed in a metric space with the weak homogeneity property, and given a measure μ doubling on a certain family of balls lying “well inside” of "omega", we introduce a local maximal function and characterize the weights w for which it is bounded on L p("omega", wdμ) when 1 < p < ∞ and of weak type (1, 1). We generalize previous known results and we also present an application to interior Sobolev’s type estimates for appropriate solutions of the differential equation "delta" mu = f , satisfied in an open proper subset "omega" of Rn. Here, the data f belongs to some weighted L p space that could allow functions to increase polynomially when approaching the boundary of "omega". |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/9380 Harboure, Eleonor Ofelia; Salinas, Oscar Mario; Viviani, Beatriz Eleonora; Local Maximal Function and Weights in a General Setting; Springer; Mathematische Annalen; 358; 3; 3-2014; 609-628 0025-5831 1432-1807 |
| url |
http://hdl.handle.net/11336/9380 |
| identifier_str_mv |
Harboure, Eleonor Ofelia; Salinas, Oscar Mario; Viviani, Beatriz Eleonora; Local Maximal Function and Weights in a General Setting; Springer; Mathematische Annalen; 358; 3; 3-2014; 609-628 0025-5831 1432-1807 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi//10.1007/s00208-013-0973-7 info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00208-013-0973-7 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782078789615616 |
| score |
12.982451 |