Local Maximal Function and Weights in a General Setting

Autores
Harboure, Eleonor Ofelia; Salinas, Oscar Mario; Viviani, Beatriz Eleonora
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
For a proper open set "omega" immersed in a metric space with the weak homogeneity property, and given a measure μ doubling on a certain family of balls lying “well inside” of "omega", we introduce a local maximal function and characterize the weights w for which it is bounded on L p("omega", wdμ) when 1 < p < ∞ and of weak type (1, 1). We generalize previous known results and we also present an application to interior Sobolev’s type estimates for appropriate solutions of the differential equation "delta" mu = f , satisfied in an open proper subset "omega" of Rn. Here, the data f belongs to some weighted L p space that could allow functions to increase polynomially when approaching the boundary of "omega".
Fil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Fil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Materia
Local
Maximal
Weights
Boundedness
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/9380

id CONICETDig_033d38a75f76719542eca1f174ab19c4
oai_identifier_str oai:ri.conicet.gov.ar:11336/9380
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Local Maximal Function and Weights in a General SettingHarboure, Eleonor OfeliaSalinas, Oscar MarioViviani, Beatriz EleonoraLocalMaximalWeightsBoundednesshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For a proper open set "omega" immersed in a metric space with the weak homogeneity property, and given a measure μ doubling on a certain family of balls lying “well inside” of "omega", we introduce a local maximal function and characterize the weights w for which it is bounded on L p("omega", wdμ) when 1 < p < ∞ and of weak type (1, 1). We generalize previous known results and we also present an application to interior Sobolev’s type estimates for appropriate solutions of the differential equation "delta" mu = f , satisfied in an open proper subset "omega" of Rn. Here, the data f belongs to some weighted L p space that could allow functions to increase polynomially when approaching the boundary of "omega".Fil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaFil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaFil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaSpringer2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9380Harboure, Eleonor Ofelia; Salinas, Oscar Mario; Viviani, Beatriz Eleonora; Local Maximal Function and Weights in a General Setting; Springer; Mathematische Annalen; 358; 3; 3-2014; 609-6280025-58311432-1807enginfo:eu-repo/semantics/altIdentifier/doi//10.1007/s00208-013-0973-7info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00208-013-0973-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:40:34Zoai:ri.conicet.gov.ar:11336/9380instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:40:35.159CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Local Maximal Function and Weights in a General Setting
title Local Maximal Function and Weights in a General Setting
spellingShingle Local Maximal Function and Weights in a General Setting
Harboure, Eleonor Ofelia
Local
Maximal
Weights
Boundedness
title_short Local Maximal Function and Weights in a General Setting
title_full Local Maximal Function and Weights in a General Setting
title_fullStr Local Maximal Function and Weights in a General Setting
title_full_unstemmed Local Maximal Function and Weights in a General Setting
title_sort Local Maximal Function and Weights in a General Setting
dc.creator.none.fl_str_mv Harboure, Eleonor Ofelia
Salinas, Oscar Mario
Viviani, Beatriz Eleonora
author Harboure, Eleonor Ofelia
author_facet Harboure, Eleonor Ofelia
Salinas, Oscar Mario
Viviani, Beatriz Eleonora
author_role author
author2 Salinas, Oscar Mario
Viviani, Beatriz Eleonora
author2_role author
author
dc.subject.none.fl_str_mv Local
Maximal
Weights
Boundedness
topic Local
Maximal
Weights
Boundedness
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv For a proper open set "omega" immersed in a metric space with the weak homogeneity property, and given a measure μ doubling on a certain family of balls lying “well inside” of "omega", we introduce a local maximal function and characterize the weights w for which it is bounded on L p("omega", wdμ) when 1 < p < ∞ and of weak type (1, 1). We generalize previous known results and we also present an application to interior Sobolev’s type estimates for appropriate solutions of the differential equation "delta" mu = f , satisfied in an open proper subset "omega" of Rn. Here, the data f belongs to some weighted L p space that could allow functions to increase polynomially when approaching the boundary of "omega".
Fil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Fil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
description For a proper open set "omega" immersed in a metric space with the weak homogeneity property, and given a measure μ doubling on a certain family of balls lying “well inside” of "omega", we introduce a local maximal function and characterize the weights w for which it is bounded on L p("omega", wdμ) when 1 < p < ∞ and of weak type (1, 1). We generalize previous known results and we also present an application to interior Sobolev’s type estimates for appropriate solutions of the differential equation "delta" mu = f , satisfied in an open proper subset "omega" of Rn. Here, the data f belongs to some weighted L p space that could allow functions to increase polynomially when approaching the boundary of "omega".
publishDate 2014
dc.date.none.fl_str_mv 2014-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/9380
Harboure, Eleonor Ofelia; Salinas, Oscar Mario; Viviani, Beatriz Eleonora; Local Maximal Function and Weights in a General Setting; Springer; Mathematische Annalen; 358; 3; 3-2014; 609-628
0025-5831
1432-1807
url http://hdl.handle.net/11336/9380
identifier_str_mv Harboure, Eleonor Ofelia; Salinas, Oscar Mario; Viviani, Beatriz Eleonora; Local Maximal Function and Weights in a General Setting; Springer; Mathematische Annalen; 358; 3; 3-2014; 609-628
0025-5831
1432-1807
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi//10.1007/s00208-013-0973-7
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00208-013-0973-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782078789615616
score 12.982451