Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces

Autores
Bernardis, Ana Lucia; Dalmasso, Estefanía Dafne; Pradolini, Gladis Guadalupe
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We characterize the class of weights related to the boundedness of maximal operators associated to a Young function η in the context of variable Lebesgue spaces. Fractional versions of these results are also obtained by means of a weighted Hedberg type inequality. These results are new even in the classical Lebesgue spaces. We also deal with Wiener’s type inequalities for the mentioned operators in the variable context. As applications of the strong type results for the maximal operators, we derive weighted boundedness properties for a large class of operators controlled by them.
Fil: Bernardis, Ana Lucia. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Fil: Dalmasso, Estefanía Dafne. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Fil: Pradolini, Gladis Guadalupe. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Materia
MUSIELAK-ORLICZ SPACES
WEIGHTS
MAXIMAL FUNCTIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15193

id CONICETDig_91cad6026a75a6e2bf68b0d572442fe9
oai_identifier_str oai:ri.conicet.gov.ar:11336/15193
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Generalized maximal functions and related operators on weighted Musielak-Orlicz spacesBernardis, Ana LuciaDalmasso, Estefanía DafnePradolini, Gladis GuadalupeMUSIELAK-ORLICZ SPACESWEIGHTSMAXIMAL FUNCTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We characterize the class of weights related to the boundedness of maximal operators associated to a Young function η in the context of variable Lebesgue spaces. Fractional versions of these results are also obtained by means of a weighted Hedberg type inequality. These results are new even in the classical Lebesgue spaces. We also deal with Wiener’s type inequalities for the mentioned operators in the variable context. As applications of the strong type results for the maximal operators, we derive weighted boundedness properties for a large class of operators controlled by them.Fil: Bernardis, Ana Lucia. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaFil: Dalmasso, Estefanía Dafne. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaFil: Pradolini, Gladis Guadalupe. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaSuomalainen Tiedeakatemia2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15193Bernardis, Ana Lucia; Dalmasso, Estefanía Dafne; Pradolini, Gladis Guadalupe; Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces; Suomalainen Tiedeakatemia; Annales Academiae Scientiarum Fennicae. Mathematica; 39; 2-2014; 23-501239-629X1798-2383enginfo:eu-repo/semantics/altIdentifier/url/http://www.acadsci.fi/mathematica/Vol39/vol39pp023-050.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:51Zoai:ri.conicet.gov.ar:11336/15193instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:52.026CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces
title Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces
spellingShingle Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces
Bernardis, Ana Lucia
MUSIELAK-ORLICZ SPACES
WEIGHTS
MAXIMAL FUNCTIONS
title_short Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces
title_full Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces
title_fullStr Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces
title_full_unstemmed Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces
title_sort Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces
dc.creator.none.fl_str_mv Bernardis, Ana Lucia
Dalmasso, Estefanía Dafne
Pradolini, Gladis Guadalupe
author Bernardis, Ana Lucia
author_facet Bernardis, Ana Lucia
Dalmasso, Estefanía Dafne
Pradolini, Gladis Guadalupe
author_role author
author2 Dalmasso, Estefanía Dafne
Pradolini, Gladis Guadalupe
author2_role author
author
dc.subject.none.fl_str_mv MUSIELAK-ORLICZ SPACES
WEIGHTS
MAXIMAL FUNCTIONS
topic MUSIELAK-ORLICZ SPACES
WEIGHTS
MAXIMAL FUNCTIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We characterize the class of weights related to the boundedness of maximal operators associated to a Young function η in the context of variable Lebesgue spaces. Fractional versions of these results are also obtained by means of a weighted Hedberg type inequality. These results are new even in the classical Lebesgue spaces. We also deal with Wiener’s type inequalities for the mentioned operators in the variable context. As applications of the strong type results for the maximal operators, we derive weighted boundedness properties for a large class of operators controlled by them.
Fil: Bernardis, Ana Lucia. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Fil: Dalmasso, Estefanía Dafne. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Fil: Pradolini, Gladis Guadalupe. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
description We characterize the class of weights related to the boundedness of maximal operators associated to a Young function η in the context of variable Lebesgue spaces. Fractional versions of these results are also obtained by means of a weighted Hedberg type inequality. These results are new even in the classical Lebesgue spaces. We also deal with Wiener’s type inequalities for the mentioned operators in the variable context. As applications of the strong type results for the maximal operators, we derive weighted boundedness properties for a large class of operators controlled by them.
publishDate 2014
dc.date.none.fl_str_mv 2014-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15193
Bernardis, Ana Lucia; Dalmasso, Estefanía Dafne; Pradolini, Gladis Guadalupe; Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces; Suomalainen Tiedeakatemia; Annales Academiae Scientiarum Fennicae. Mathematica; 39; 2-2014; 23-50
1239-629X
1798-2383
url http://hdl.handle.net/11336/15193
identifier_str_mv Bernardis, Ana Lucia; Dalmasso, Estefanía Dafne; Pradolini, Gladis Guadalupe; Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces; Suomalainen Tiedeakatemia; Annales Academiae Scientiarum Fennicae. Mathematica; 39; 2-2014; 23-50
1239-629X
1798-2383
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.acadsci.fi/mathematica/Vol39/vol39pp023-050.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Suomalainen Tiedeakatemia
publisher.none.fl_str_mv Suomalainen Tiedeakatemia
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269489198006272
score 13.13397