Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces
- Autores
- Bernardis, Ana Lucia; Dalmasso, Estefanía Dafne; Pradolini, Gladis Guadalupe
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We characterize the class of weights related to the boundedness of maximal operators associated to a Young function η in the context of variable Lebesgue spaces. Fractional versions of these results are also obtained by means of a weighted Hedberg type inequality. These results are new even in the classical Lebesgue spaces. We also deal with Wiener’s type inequalities for the mentioned operators in the variable context. As applications of the strong type results for the maximal operators, we derive weighted boundedness properties for a large class of operators controlled by them.
Fil: Bernardis, Ana Lucia. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Fil: Dalmasso, Estefanía Dafne. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Fil: Pradolini, Gladis Guadalupe. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina - Materia
-
MUSIELAK-ORLICZ SPACES
WEIGHTS
MAXIMAL FUNCTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15193
Ver los metadatos del registro completo
id |
CONICETDig_91cad6026a75a6e2bf68b0d572442fe9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15193 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Generalized maximal functions and related operators on weighted Musielak-Orlicz spacesBernardis, Ana LuciaDalmasso, Estefanía DafnePradolini, Gladis GuadalupeMUSIELAK-ORLICZ SPACESWEIGHTSMAXIMAL FUNCTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We characterize the class of weights related to the boundedness of maximal operators associated to a Young function η in the context of variable Lebesgue spaces. Fractional versions of these results are also obtained by means of a weighted Hedberg type inequality. These results are new even in the classical Lebesgue spaces. We also deal with Wiener’s type inequalities for the mentioned operators in the variable context. As applications of the strong type results for the maximal operators, we derive weighted boundedness properties for a large class of operators controlled by them.Fil: Bernardis, Ana Lucia. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaFil: Dalmasso, Estefanía Dafne. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaFil: Pradolini, Gladis Guadalupe. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaSuomalainen Tiedeakatemia2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15193Bernardis, Ana Lucia; Dalmasso, Estefanía Dafne; Pradolini, Gladis Guadalupe; Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces; Suomalainen Tiedeakatemia; Annales Academiae Scientiarum Fennicae. Mathematica; 39; 2-2014; 23-501239-629X1798-2383enginfo:eu-repo/semantics/altIdentifier/url/http://www.acadsci.fi/mathematica/Vol39/vol39pp023-050.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:51Zoai:ri.conicet.gov.ar:11336/15193instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:52.026CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces |
title |
Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces |
spellingShingle |
Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces Bernardis, Ana Lucia MUSIELAK-ORLICZ SPACES WEIGHTS MAXIMAL FUNCTIONS |
title_short |
Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces |
title_full |
Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces |
title_fullStr |
Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces |
title_full_unstemmed |
Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces |
title_sort |
Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces |
dc.creator.none.fl_str_mv |
Bernardis, Ana Lucia Dalmasso, Estefanía Dafne Pradolini, Gladis Guadalupe |
author |
Bernardis, Ana Lucia |
author_facet |
Bernardis, Ana Lucia Dalmasso, Estefanía Dafne Pradolini, Gladis Guadalupe |
author_role |
author |
author2 |
Dalmasso, Estefanía Dafne Pradolini, Gladis Guadalupe |
author2_role |
author author |
dc.subject.none.fl_str_mv |
MUSIELAK-ORLICZ SPACES WEIGHTS MAXIMAL FUNCTIONS |
topic |
MUSIELAK-ORLICZ SPACES WEIGHTS MAXIMAL FUNCTIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We characterize the class of weights related to the boundedness of maximal operators associated to a Young function η in the context of variable Lebesgue spaces. Fractional versions of these results are also obtained by means of a weighted Hedberg type inequality. These results are new even in the classical Lebesgue spaces. We also deal with Wiener’s type inequalities for the mentioned operators in the variable context. As applications of the strong type results for the maximal operators, we derive weighted boundedness properties for a large class of operators controlled by them. Fil: Bernardis, Ana Lucia. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina Fil: Dalmasso, Estefanía Dafne. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina Fil: Pradolini, Gladis Guadalupe. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina |
description |
We characterize the class of weights related to the boundedness of maximal operators associated to a Young function η in the context of variable Lebesgue spaces. Fractional versions of these results are also obtained by means of a weighted Hedberg type inequality. These results are new even in the classical Lebesgue spaces. We also deal with Wiener’s type inequalities for the mentioned operators in the variable context. As applications of the strong type results for the maximal operators, we derive weighted boundedness properties for a large class of operators controlled by them. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15193 Bernardis, Ana Lucia; Dalmasso, Estefanía Dafne; Pradolini, Gladis Guadalupe; Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces; Suomalainen Tiedeakatemia; Annales Academiae Scientiarum Fennicae. Mathematica; 39; 2-2014; 23-50 1239-629X 1798-2383 |
url |
http://hdl.handle.net/11336/15193 |
identifier_str_mv |
Bernardis, Ana Lucia; Dalmasso, Estefanía Dafne; Pradolini, Gladis Guadalupe; Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces; Suomalainen Tiedeakatemia; Annales Academiae Scientiarum Fennicae. Mathematica; 39; 2-2014; 23-50 1239-629X 1798-2383 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.acadsci.fi/mathematica/Vol39/vol39pp023-050.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Suomalainen Tiedeakatemia |
publisher.none.fl_str_mv |
Suomalainen Tiedeakatemia |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269489198006272 |
score |
13.13397 |