Asymptotic behavior for a one-dimensional nonlocal diffusion equation in exterior domains
- Autores
- Cortázar, Carmen; Elgueta, Manuel; Quirós, Fernando; Wolanski, Noemi Irene
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the long time behavior of solutions to the nonlocal diffusion equation ∂tu = J ∗ u − u in an exterior one-dimensional domain, with zero Dirichlet data on the complement. In the far field scale, ξ1 ≤ |x|t −1/2 ≤ ξ2, ξ1, ξ2 > 0, this behavior is given by a multiple of the dipole solution for the local heat equation with a diffusivity determined by J. However, the proportionality constant is not the same on R+ and R−: it is given by the asymptotic first moment of the solution on the corresponding half line, which can be computed in terms of the initial data. In the near field scale, |x| ≤ t 1/2h(t), limt→∞ h(t) = 0, the solution scaled by a factor t 3/2 /(|x| + 1) converges to a stationary solution of the problem that behaves as b ±x as x → ±∞. The constants b ± are obtained through a matching procedure with the far field limit. In the very far field, |x|≥t 1/2 g(t), g(t) → ∞, the solution has order o(t −1 ).
Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; Chile
Fil: Elgueta, Manuel. Pontificia Universidad Católica de Chile; Chile
Fil: Quirós, Fernando. Universidad Autónoma de Madrid; España
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Difusión no local
Comportamiento asintótico - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18936
Ver los metadatos del registro completo
id |
CONICETDig_013170ccbce028056d30a0685e02aab2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18936 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Asymptotic behavior for a one-dimensional nonlocal diffusion equation in exterior domainsCortázar, CarmenElgueta, ManuelQuirós, FernandoWolanski, Noemi IreneDifusión no localComportamiento asintóticohttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the long time behavior of solutions to the nonlocal diffusion equation ∂tu = J ∗ u − u in an exterior one-dimensional domain, with zero Dirichlet data on the complement. In the far field scale, ξ1 ≤ |x|t −1/2 ≤ ξ2, ξ1, ξ2 > 0, this behavior is given by a multiple of the dipole solution for the local heat equation with a diffusivity determined by J. However, the proportionality constant is not the same on R+ and R−: it is given by the asymptotic first moment of the solution on the corresponding half line, which can be computed in terms of the initial data. In the near field scale, |x| ≤ t 1/2h(t), limt→∞ h(t) = 0, the solution scaled by a factor t 3/2 /(|x| + 1) converges to a stationary solution of the problem that behaves as b ±x as x → ±∞. The constants b ± are obtained through a matching procedure with the far field limit. In the very far field, |x|≥t 1/2 g(t), g(t) → ∞, the solution has order o(t −1 ).Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; ChileFil: Elgueta, Manuel. Pontificia Universidad Católica de Chile; ChileFil: Quirós, Fernando. Universidad Autónoma de Madrid; EspañaFil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSiam Publications2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18936Cortázar, Carmen; Elgueta, Manuel; Quirós, Fernando; Wolanski, Noemi Irene; Asymptotic behavior for a one-dimensional nonlocal diffusion equation in exterior domains; Siam Publications; Siam Journal On Mathematical Analysis; 48; 3; 3-2016; 1549-15740036-14101095-7154CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1137/151006287info:eu-repo/semantics/altIdentifier/url/http://epubs.siam.org/doi/abs/10.1137/151006287info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1412.0731info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:28:39Zoai:ri.conicet.gov.ar:11336/18936instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:28:39.604CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Asymptotic behavior for a one-dimensional nonlocal diffusion equation in exterior domains |
title |
Asymptotic behavior for a one-dimensional nonlocal diffusion equation in exterior domains |
spellingShingle |
Asymptotic behavior for a one-dimensional nonlocal diffusion equation in exterior domains Cortázar, Carmen Difusión no local Comportamiento asintótico |
title_short |
Asymptotic behavior for a one-dimensional nonlocal diffusion equation in exterior domains |
title_full |
Asymptotic behavior for a one-dimensional nonlocal diffusion equation in exterior domains |
title_fullStr |
Asymptotic behavior for a one-dimensional nonlocal diffusion equation in exterior domains |
title_full_unstemmed |
Asymptotic behavior for a one-dimensional nonlocal diffusion equation in exterior domains |
title_sort |
Asymptotic behavior for a one-dimensional nonlocal diffusion equation in exterior domains |
dc.creator.none.fl_str_mv |
Cortázar, Carmen Elgueta, Manuel Quirós, Fernando Wolanski, Noemi Irene |
author |
Cortázar, Carmen |
author_facet |
Cortázar, Carmen Elgueta, Manuel Quirós, Fernando Wolanski, Noemi Irene |
author_role |
author |
author2 |
Elgueta, Manuel Quirós, Fernando Wolanski, Noemi Irene |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Difusión no local Comportamiento asintótico |
topic |
Difusión no local Comportamiento asintótico |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the long time behavior of solutions to the nonlocal diffusion equation ∂tu = J ∗ u − u in an exterior one-dimensional domain, with zero Dirichlet data on the complement. In the far field scale, ξ1 ≤ |x|t −1/2 ≤ ξ2, ξ1, ξ2 > 0, this behavior is given by a multiple of the dipole solution for the local heat equation with a diffusivity determined by J. However, the proportionality constant is not the same on R+ and R−: it is given by the asymptotic first moment of the solution on the corresponding half line, which can be computed in terms of the initial data. In the near field scale, |x| ≤ t 1/2h(t), limt→∞ h(t) = 0, the solution scaled by a factor t 3/2 /(|x| + 1) converges to a stationary solution of the problem that behaves as b ±x as x → ±∞. The constants b ± are obtained through a matching procedure with the far field limit. In the very far field, |x|≥t 1/2 g(t), g(t) → ∞, the solution has order o(t −1 ). Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; Chile Fil: Elgueta, Manuel. Pontificia Universidad Católica de Chile; Chile Fil: Quirós, Fernando. Universidad Autónoma de Madrid; España Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We study the long time behavior of solutions to the nonlocal diffusion equation ∂tu = J ∗ u − u in an exterior one-dimensional domain, with zero Dirichlet data on the complement. In the far field scale, ξ1 ≤ |x|t −1/2 ≤ ξ2, ξ1, ξ2 > 0, this behavior is given by a multiple of the dipole solution for the local heat equation with a diffusivity determined by J. However, the proportionality constant is not the same on R+ and R−: it is given by the asymptotic first moment of the solution on the corresponding half line, which can be computed in terms of the initial data. In the near field scale, |x| ≤ t 1/2h(t), limt→∞ h(t) = 0, the solution scaled by a factor t 3/2 /(|x| + 1) converges to a stationary solution of the problem that behaves as b ±x as x → ±∞. The constants b ± are obtained through a matching procedure with the far field limit. In the very far field, |x|≥t 1/2 g(t), g(t) → ∞, the solution has order o(t −1 ). |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18936 Cortázar, Carmen; Elgueta, Manuel; Quirós, Fernando; Wolanski, Noemi Irene; Asymptotic behavior for a one-dimensional nonlocal diffusion equation in exterior domains; Siam Publications; Siam Journal On Mathematical Analysis; 48; 3; 3-2016; 1549-1574 0036-1410 1095-7154 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18936 |
identifier_str_mv |
Cortázar, Carmen; Elgueta, Manuel; Quirós, Fernando; Wolanski, Noemi Irene; Asymptotic behavior for a one-dimensional nonlocal diffusion equation in exterior domains; Siam Publications; Siam Journal On Mathematical Analysis; 48; 3; 3-2016; 1549-1574 0036-1410 1095-7154 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1137/151006287 info:eu-repo/semantics/altIdentifier/url/http://epubs.siam.org/doi/abs/10.1137/151006287 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1412.0731 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Siam Publications |
publisher.none.fl_str_mv |
Siam Publications |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614290775998464 |
score |
13.070432 |