Non-linear aeroelastic behavior of large horizontal-axis wind turbines: A multibody system approach

Autores
Gebhardt, Cristian Guillermo; Preidikman, Sergio; M. H. Jørgensen; Massa, Julio Cesar
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we present the development of a rigid-flexible multibody model which, coupled with an existing aerodynamic model, is used to numerically simulate the non-linear aeroelastic behavior of large horizontal-axis wind turbines. The model is rather general, different configurations could be easily simulated though it is primarily intended to be used as a research tool to investigate influences of different dynamic aspects. It includes: i) a supporting tower; ii) a nacelle which contains the electricity generator, the power electronics and the control systems; iii) a hub, where the blades are fixed, connected to the generator rotating shaft; and, iv) three blades which extract energy from the airstream. The blades are considered flexible, and their equations of motion are discretized in space domain by using beam finite elements capable of taking into account the non-linearities coming from the kinematics. The tower is also considered flexible, but its equations of motion are discretized by using the method of assumed-modes. The nacelle and hub are considered rigid, and their equations of motion take into account the effects of the kinematic non-linearities. Due to the system complexity, the tower, nacelle and hub are modeled as a single kinematic chain and each blade is modeled separately. Constraint equations are used to connect the blades to the hub. The resulting governing equations are differential-algebraic, and these are numerically and interactively solved in the time domain by using a fourth order predictor-corrector scheme. The results help to understand the wind speed influence on: i) the rotor angular speed; ii) the after-forward and side-to-side displacements of the tower; and, iii) the flap- and edge-wise displacements of the blades. © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Fil: Gebhardt, Cristian Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Estructuras; Argentina
Fil: Preidikman, Sergio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
Fil: M. H. Jørgensen. Aalborg University; Dinamarca
Fil: Massa, Julio Cesar. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
Materia
AERODYNAMICS
AEROELASTICITY
RIGID-FLEXIBLE MULTIBODY SYSTEMS
WIND TURBINES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/195496

id CONICETDig_2db95a068435cdfb869c8d10ffe70239
oai_identifier_str oai:ri.conicet.gov.ar:11336/195496
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Non-linear aeroelastic behavior of large horizontal-axis wind turbines: A multibody system approachGebhardt, Cristian GuillermoPreidikman, SergioM. H. JørgensenMassa, Julio CesarAERODYNAMICSAEROELASTICITYRIGID-FLEXIBLE MULTIBODY SYSTEMSWIND TURBINEShttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2In this paper, we present the development of a rigid-flexible multibody model which, coupled with an existing aerodynamic model, is used to numerically simulate the non-linear aeroelastic behavior of large horizontal-axis wind turbines. The model is rather general, different configurations could be easily simulated though it is primarily intended to be used as a research tool to investigate influences of different dynamic aspects. It includes: i) a supporting tower; ii) a nacelle which contains the electricity generator, the power electronics and the control systems; iii) a hub, where the blades are fixed, connected to the generator rotating shaft; and, iv) three blades which extract energy from the airstream. The blades are considered flexible, and their equations of motion are discretized in space domain by using beam finite elements capable of taking into account the non-linearities coming from the kinematics. The tower is also considered flexible, but its equations of motion are discretized by using the method of assumed-modes. The nacelle and hub are considered rigid, and their equations of motion take into account the effects of the kinematic non-linearities. Due to the system complexity, the tower, nacelle and hub are modeled as a single kinematic chain and each blade is modeled separately. Constraint equations are used to connect the blades to the hub. The resulting governing equations are differential-algebraic, and these are numerically and interactively solved in the time domain by using a fourth order predictor-corrector scheme. The results help to understand the wind speed influence on: i) the rotor angular speed; ii) the after-forward and side-to-side displacements of the tower; and, iii) the flap- and edge-wise displacements of the blades. © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.Fil: Gebhardt, Cristian Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Estructuras; ArgentinaFil: Preidikman, Sergio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaFil: M. H. Jørgensen. Aalborg University; DinamarcaFil: Massa, Julio Cesar. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaPergamon-Elsevier Science Ltd2012-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/195496Gebhardt, Cristian Guillermo; Preidikman, Sergio; M. H. Jørgensen; Massa, Julio Cesar; Non-linear aeroelastic behavior of large horizontal-axis wind turbines: A multibody system approach; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 37; 19; 10-2012; 14719-147240360-3199CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2011.12.090info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0360319911027832info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:47Zoai:ri.conicet.gov.ar:11336/195496instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:47.387CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Non-linear aeroelastic behavior of large horizontal-axis wind turbines: A multibody system approach
title Non-linear aeroelastic behavior of large horizontal-axis wind turbines: A multibody system approach
spellingShingle Non-linear aeroelastic behavior of large horizontal-axis wind turbines: A multibody system approach
Gebhardt, Cristian Guillermo
AERODYNAMICS
AEROELASTICITY
RIGID-FLEXIBLE MULTIBODY SYSTEMS
WIND TURBINES
title_short Non-linear aeroelastic behavior of large horizontal-axis wind turbines: A multibody system approach
title_full Non-linear aeroelastic behavior of large horizontal-axis wind turbines: A multibody system approach
title_fullStr Non-linear aeroelastic behavior of large horizontal-axis wind turbines: A multibody system approach
title_full_unstemmed Non-linear aeroelastic behavior of large horizontal-axis wind turbines: A multibody system approach
title_sort Non-linear aeroelastic behavior of large horizontal-axis wind turbines: A multibody system approach
dc.creator.none.fl_str_mv Gebhardt, Cristian Guillermo
Preidikman, Sergio
M. H. Jørgensen
Massa, Julio Cesar
author Gebhardt, Cristian Guillermo
author_facet Gebhardt, Cristian Guillermo
Preidikman, Sergio
M. H. Jørgensen
Massa, Julio Cesar
author_role author
author2 Preidikman, Sergio
M. H. Jørgensen
Massa, Julio Cesar
author2_role author
author
author
dc.subject.none.fl_str_mv AERODYNAMICS
AEROELASTICITY
RIGID-FLEXIBLE MULTIBODY SYSTEMS
WIND TURBINES
topic AERODYNAMICS
AEROELASTICITY
RIGID-FLEXIBLE MULTIBODY SYSTEMS
WIND TURBINES
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this paper, we present the development of a rigid-flexible multibody model which, coupled with an existing aerodynamic model, is used to numerically simulate the non-linear aeroelastic behavior of large horizontal-axis wind turbines. The model is rather general, different configurations could be easily simulated though it is primarily intended to be used as a research tool to investigate influences of different dynamic aspects. It includes: i) a supporting tower; ii) a nacelle which contains the electricity generator, the power electronics and the control systems; iii) a hub, where the blades are fixed, connected to the generator rotating shaft; and, iv) three blades which extract energy from the airstream. The blades are considered flexible, and their equations of motion are discretized in space domain by using beam finite elements capable of taking into account the non-linearities coming from the kinematics. The tower is also considered flexible, but its equations of motion are discretized by using the method of assumed-modes. The nacelle and hub are considered rigid, and their equations of motion take into account the effects of the kinematic non-linearities. Due to the system complexity, the tower, nacelle and hub are modeled as a single kinematic chain and each blade is modeled separately. Constraint equations are used to connect the blades to the hub. The resulting governing equations are differential-algebraic, and these are numerically and interactively solved in the time domain by using a fourth order predictor-corrector scheme. The results help to understand the wind speed influence on: i) the rotor angular speed; ii) the after-forward and side-to-side displacements of the tower; and, iii) the flap- and edge-wise displacements of the blades. © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Fil: Gebhardt, Cristian Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Estructuras; Argentina
Fil: Preidikman, Sergio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
Fil: M. H. Jørgensen. Aalborg University; Dinamarca
Fil: Massa, Julio Cesar. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
description In this paper, we present the development of a rigid-flexible multibody model which, coupled with an existing aerodynamic model, is used to numerically simulate the non-linear aeroelastic behavior of large horizontal-axis wind turbines. The model is rather general, different configurations could be easily simulated though it is primarily intended to be used as a research tool to investigate influences of different dynamic aspects. It includes: i) a supporting tower; ii) a nacelle which contains the electricity generator, the power electronics and the control systems; iii) a hub, where the blades are fixed, connected to the generator rotating shaft; and, iv) three blades which extract energy from the airstream. The blades are considered flexible, and their equations of motion are discretized in space domain by using beam finite elements capable of taking into account the non-linearities coming from the kinematics. The tower is also considered flexible, but its equations of motion are discretized by using the method of assumed-modes. The nacelle and hub are considered rigid, and their equations of motion take into account the effects of the kinematic non-linearities. Due to the system complexity, the tower, nacelle and hub are modeled as a single kinematic chain and each blade is modeled separately. Constraint equations are used to connect the blades to the hub. The resulting governing equations are differential-algebraic, and these are numerically and interactively solved in the time domain by using a fourth order predictor-corrector scheme. The results help to understand the wind speed influence on: i) the rotor angular speed; ii) the after-forward and side-to-side displacements of the tower; and, iii) the flap- and edge-wise displacements of the blades. © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
publishDate 2012
dc.date.none.fl_str_mv 2012-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/195496
Gebhardt, Cristian Guillermo; Preidikman, Sergio; M. H. Jørgensen; Massa, Julio Cesar; Non-linear aeroelastic behavior of large horizontal-axis wind turbines: A multibody system approach; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 37; 19; 10-2012; 14719-14724
0360-3199
CONICET Digital
CONICET
url http://hdl.handle.net/11336/195496
identifier_str_mv Gebhardt, Cristian Guillermo; Preidikman, Sergio; M. H. Jørgensen; Massa, Julio Cesar; Non-linear aeroelastic behavior of large horizontal-axis wind turbines: A multibody system approach; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 37; 19; 10-2012; 14719-14724
0360-3199
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2011.12.090
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0360319911027832
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613002125377536
score 13.070432