Scaling of distributions of sums of positions for chaotic dynamics at band-splitting points
- Autores
- Díaz Ruelas, Alvaro; Fuentes, Miguel Angel; Robledo, Jorge Alberto
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The stationary distributions of sums of positions of trajectories generated by the logistic map have been found to follow a basic renormalization group (RG) structure: a nontrivial fixed-point multi-scale distribution at the period-doubling onset of chaos and a Gaussian trivial fixed-point distribution for all chaotic attractors. Here we describe in detail the crossover distributions that can be generated at chaotic band-splitting points that mediate between the aforementioned fixed-point distributions. Self-affinity in the chaotic region imprints scaling features to the crossover distributions along the sequence of band-splitting points. The trajectories that give rise to these distributions are governed first by the sequential formation of phase-space gaps when, initially uniformly distributed, sets of trajectories evolve towards the chaotic band attractors. Subsequently, the summation of positions of trajectories already within the chaotic bands closes those gaps. The possible shapes of the resultant distributions depend crucially on the disposal of sets of early positions in the sums and the stoppage of the number of terms retained in them.
Fil: Díaz Ruelas, Alvaro. Universidad Nacional Autónoma de México; México
Fil: Fuentes, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Sistemas Complejos de Valparaíso; Chile. Santa Fe Institute; Estados Unidos. Instituto de Investigaciones Filosóficas - Sadaf; Argentina
Fil: Robledo, Jorge Alberto. Universidad Nacional Autónoma de México; México - Materia
-
Low-dimensional chaos
Numerical simulations of chaotic systems
Renormalization group methods - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98988
Ver los metadatos del registro completo
id |
CONICETDig_00b20dd0aac8695a8353b72c7d2bf1df |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98988 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Scaling of distributions of sums of positions for chaotic dynamics at band-splitting pointsDíaz Ruelas, AlvaroFuentes, Miguel AngelRobledo, Jorge AlbertoLow-dimensional chaosNumerical simulations of chaotic systemsRenormalization group methodshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The stationary distributions of sums of positions of trajectories generated by the logistic map have been found to follow a basic renormalization group (RG) structure: a nontrivial fixed-point multi-scale distribution at the period-doubling onset of chaos and a Gaussian trivial fixed-point distribution for all chaotic attractors. Here we describe in detail the crossover distributions that can be generated at chaotic band-splitting points that mediate between the aforementioned fixed-point distributions. Self-affinity in the chaotic region imprints scaling features to the crossover distributions along the sequence of band-splitting points. The trajectories that give rise to these distributions are governed first by the sequential formation of phase-space gaps when, initially uniformly distributed, sets of trajectories evolve towards the chaotic band attractors. Subsequently, the summation of positions of trajectories already within the chaotic bands closes those gaps. The possible shapes of the resultant distributions depend crucially on the disposal of sets of early positions in the sums and the stoppage of the number of terms retained in them.Fil: Díaz Ruelas, Alvaro. Universidad Nacional Autónoma de México; MéxicoFil: Fuentes, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Sistemas Complejos de Valparaíso; Chile. Santa Fe Institute; Estados Unidos. Instituto de Investigaciones Filosóficas - Sadaf; ArgentinaFil: Robledo, Jorge Alberto. Universidad Nacional Autónoma de México; MéxicoEurophysics Letters2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98988Díaz Ruelas, Alvaro; Fuentes, Miguel Angel; Robledo, Jorge Alberto; Scaling of distributions of sums of positions for chaotic dynamics at band-splitting points; Europhysics Letters; Europhysics Letters; 108; 2; 10-2014; 1-50295-5075CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1209/0295-5075/108/20008info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1209/0295-5075/108/20008info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1409.7449info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:53:52Zoai:ri.conicet.gov.ar:11336/98988instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:53:52.344CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Scaling of distributions of sums of positions for chaotic dynamics at band-splitting points |
title |
Scaling of distributions of sums of positions for chaotic dynamics at band-splitting points |
spellingShingle |
Scaling of distributions of sums of positions for chaotic dynamics at band-splitting points Díaz Ruelas, Alvaro Low-dimensional chaos Numerical simulations of chaotic systems Renormalization group methods |
title_short |
Scaling of distributions of sums of positions for chaotic dynamics at band-splitting points |
title_full |
Scaling of distributions of sums of positions for chaotic dynamics at band-splitting points |
title_fullStr |
Scaling of distributions of sums of positions for chaotic dynamics at band-splitting points |
title_full_unstemmed |
Scaling of distributions of sums of positions for chaotic dynamics at band-splitting points |
title_sort |
Scaling of distributions of sums of positions for chaotic dynamics at band-splitting points |
dc.creator.none.fl_str_mv |
Díaz Ruelas, Alvaro Fuentes, Miguel Angel Robledo, Jorge Alberto |
author |
Díaz Ruelas, Alvaro |
author_facet |
Díaz Ruelas, Alvaro Fuentes, Miguel Angel Robledo, Jorge Alberto |
author_role |
author |
author2 |
Fuentes, Miguel Angel Robledo, Jorge Alberto |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Low-dimensional chaos Numerical simulations of chaotic systems Renormalization group methods |
topic |
Low-dimensional chaos Numerical simulations of chaotic systems Renormalization group methods |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The stationary distributions of sums of positions of trajectories generated by the logistic map have been found to follow a basic renormalization group (RG) structure: a nontrivial fixed-point multi-scale distribution at the period-doubling onset of chaos and a Gaussian trivial fixed-point distribution for all chaotic attractors. Here we describe in detail the crossover distributions that can be generated at chaotic band-splitting points that mediate between the aforementioned fixed-point distributions. Self-affinity in the chaotic region imprints scaling features to the crossover distributions along the sequence of band-splitting points. The trajectories that give rise to these distributions are governed first by the sequential formation of phase-space gaps when, initially uniformly distributed, sets of trajectories evolve towards the chaotic band attractors. Subsequently, the summation of positions of trajectories already within the chaotic bands closes those gaps. The possible shapes of the resultant distributions depend crucially on the disposal of sets of early positions in the sums and the stoppage of the number of terms retained in them. Fil: Díaz Ruelas, Alvaro. Universidad Nacional Autónoma de México; México Fil: Fuentes, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Sistemas Complejos de Valparaíso; Chile. Santa Fe Institute; Estados Unidos. Instituto de Investigaciones Filosóficas - Sadaf; Argentina Fil: Robledo, Jorge Alberto. Universidad Nacional Autónoma de México; México |
description |
The stationary distributions of sums of positions of trajectories generated by the logistic map have been found to follow a basic renormalization group (RG) structure: a nontrivial fixed-point multi-scale distribution at the period-doubling onset of chaos and a Gaussian trivial fixed-point distribution for all chaotic attractors. Here we describe in detail the crossover distributions that can be generated at chaotic band-splitting points that mediate between the aforementioned fixed-point distributions. Self-affinity in the chaotic region imprints scaling features to the crossover distributions along the sequence of band-splitting points. The trajectories that give rise to these distributions are governed first by the sequential formation of phase-space gaps when, initially uniformly distributed, sets of trajectories evolve towards the chaotic band attractors. Subsequently, the summation of positions of trajectories already within the chaotic bands closes those gaps. The possible shapes of the resultant distributions depend crucially on the disposal of sets of early positions in the sums and the stoppage of the number of terms retained in them. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98988 Díaz Ruelas, Alvaro; Fuentes, Miguel Angel; Robledo, Jorge Alberto; Scaling of distributions of sums of positions for chaotic dynamics at band-splitting points; Europhysics Letters; Europhysics Letters; 108; 2; 10-2014; 1-5 0295-5075 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98988 |
identifier_str_mv |
Díaz Ruelas, Alvaro; Fuentes, Miguel Angel; Robledo, Jorge Alberto; Scaling of distributions of sums of positions for chaotic dynamics at band-splitting points; Europhysics Letters; Europhysics Letters; 108; 2; 10-2014; 1-5 0295-5075 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1209/0295-5075/108/20008 info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1209/0295-5075/108/20008 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1409.7449 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Europhysics Letters |
publisher.none.fl_str_mv |
Europhysics Letters |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083069861167104 |
score |
13.22299 |