Stochastic approach to diffusion inside the chaotic layer of a resonance
- Autores
- Mestre, Martín Federico; Bazzani, Armando; Cincotta, Pablo Miguel; Giordano, Claudia Marcela
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We model chaotic diffusion in a symplectic four-dimensional (4D) map by using the result of a theorem that was developed for stochastically perturbed integrable Hamiltonian systems. We explicitly consider a map defined by a free rotator (FR) coupled to a standard map (SM). We focus on the diffusion process in the action I of the FR, obtaining a seminumerical method to compute the diffusion coefficient. We study two cases corresponding to a thick and a thin chaotic layer in the SM phase space and we discuss a related conjecture stated in the past. In the first case, the numerically computed probability density function for the action I is well interpolated by the solution of a Fokker-Planck (FP) equation, whereas it presents a nonconstant time shift with respect to the concomitant FP solution in the second case suggesting the presence of an anomalous diffusion time scale. The explicit calculation of a diffusion coefficient for a 4D symplectic map can be useful to understand the slow diffusion observed in celestial mechanics and accelerator physics.
Instituto de Astrofísica de La Plata - Materia
-
Ciencias Astronómicas
Stochastic Analysis Methods
Numerical Simulations of Chaotic Systems
Classical Transport - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/93540
Ver los metadatos del registro completo
| id |
SEDICI_f96b5d5fd2f1958686a3328adee9b6a0 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/93540 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Stochastic approach to diffusion inside the chaotic layer of a resonanceMestre, Martín FedericoBazzani, ArmandoCincotta, Pablo MiguelGiordano, Claudia MarcelaCiencias AstronómicasStochastic Analysis MethodsNumerical Simulations of Chaotic SystemsClassical TransportWe model chaotic diffusion in a symplectic four-dimensional (4D) map by using the result of a theorem that was developed for stochastically perturbed integrable Hamiltonian systems. We explicitly consider a map defined by a free rotator (FR) coupled to a standard map (SM). We focus on the diffusion process in the action I of the FR, obtaining a seminumerical method to compute the diffusion coefficient. We study two cases corresponding to a thick and a thin chaotic layer in the SM phase space and we discuss a related conjecture stated in the past. In the first case, the numerically computed probability density function for the action I is well interpolated by the solution of a Fokker-Planck (FP) equation, whereas it presents a nonconstant time shift with respect to the concomitant FP solution in the second case suggesting the presence of an anomalous diffusion time scale. The explicit calculation of a diffusion coefficient for a 4D symplectic map can be useful to understand the slow diffusion observed in celestial mechanics and accelerator physics.Instituto de Astrofísica de La Plata2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf12911-12911http://sedici.unlp.edu.ar/handle/10915/93540enginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.012911info:eu-repo/semantics/altIdentifier/issn/1539-3755info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.89.012911info:eu-repo/semantics/altIdentifier/hdl/11336/82374info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-05T12:58:47Zoai:sedici.unlp.edu.ar:10915/93540Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-05 12:58:47.872SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Stochastic approach to diffusion inside the chaotic layer of a resonance |
| title |
Stochastic approach to diffusion inside the chaotic layer of a resonance |
| spellingShingle |
Stochastic approach to diffusion inside the chaotic layer of a resonance Mestre, Martín Federico Ciencias Astronómicas Stochastic Analysis Methods Numerical Simulations of Chaotic Systems Classical Transport |
| title_short |
Stochastic approach to diffusion inside the chaotic layer of a resonance |
| title_full |
Stochastic approach to diffusion inside the chaotic layer of a resonance |
| title_fullStr |
Stochastic approach to diffusion inside the chaotic layer of a resonance |
| title_full_unstemmed |
Stochastic approach to diffusion inside the chaotic layer of a resonance |
| title_sort |
Stochastic approach to diffusion inside the chaotic layer of a resonance |
| dc.creator.none.fl_str_mv |
Mestre, Martín Federico Bazzani, Armando Cincotta, Pablo Miguel Giordano, Claudia Marcela |
| author |
Mestre, Martín Federico |
| author_facet |
Mestre, Martín Federico Bazzani, Armando Cincotta, Pablo Miguel Giordano, Claudia Marcela |
| author_role |
author |
| author2 |
Bazzani, Armando Cincotta, Pablo Miguel Giordano, Claudia Marcela |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Ciencias Astronómicas Stochastic Analysis Methods Numerical Simulations of Chaotic Systems Classical Transport |
| topic |
Ciencias Astronómicas Stochastic Analysis Methods Numerical Simulations of Chaotic Systems Classical Transport |
| dc.description.none.fl_txt_mv |
We model chaotic diffusion in a symplectic four-dimensional (4D) map by using the result of a theorem that was developed for stochastically perturbed integrable Hamiltonian systems. We explicitly consider a map defined by a free rotator (FR) coupled to a standard map (SM). We focus on the diffusion process in the action I of the FR, obtaining a seminumerical method to compute the diffusion coefficient. We study two cases corresponding to a thick and a thin chaotic layer in the SM phase space and we discuss a related conjecture stated in the past. In the first case, the numerically computed probability density function for the action I is well interpolated by the solution of a Fokker-Planck (FP) equation, whereas it presents a nonconstant time shift with respect to the concomitant FP solution in the second case suggesting the presence of an anomalous diffusion time scale. The explicit calculation of a diffusion coefficient for a 4D symplectic map can be useful to understand the slow diffusion observed in celestial mechanics and accelerator physics. Instituto de Astrofísica de La Plata |
| description |
We model chaotic diffusion in a symplectic four-dimensional (4D) map by using the result of a theorem that was developed for stochastically perturbed integrable Hamiltonian systems. We explicitly consider a map defined by a free rotator (FR) coupled to a standard map (SM). We focus on the diffusion process in the action I of the FR, obtaining a seminumerical method to compute the diffusion coefficient. We study two cases corresponding to a thick and a thin chaotic layer in the SM phase space and we discuss a related conjecture stated in the past. In the first case, the numerically computed probability density function for the action I is well interpolated by the solution of a Fokker-Planck (FP) equation, whereas it presents a nonconstant time shift with respect to the concomitant FP solution in the second case suggesting the presence of an anomalous diffusion time scale. The explicit calculation of a diffusion coefficient for a 4D symplectic map can be useful to understand the slow diffusion observed in celestial mechanics and accelerator physics. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/93540 |
| url |
http://sedici.unlp.edu.ar/handle/10915/93540 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.012911 info:eu-repo/semantics/altIdentifier/issn/1539-3755 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.89.012911 info:eu-repo/semantics/altIdentifier/hdl/11336/82374 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 12911-12911 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1847978630288769024 |
| score |
13.087074 |