Stochastic approach to diffusion inside the chaotic layer of a resonance

Autores
Mestre, Martín Federico; Bazzani, Armando; Cincotta, Pablo Miguel; Giordano, Claudia Marcela
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We model chaotic diffusion in a symplectic four-dimensional (4D) map by using the result of a theorem that was developed for stochastically perturbed integrable Hamiltonian systems. We explicitly consider a map defined by a free rotator (FR) coupled to a standard map (SM). We focus on the diffusion process in the action I of the FR, obtaining a seminumerical method to compute the diffusion coefficient. We study two cases corresponding to a thick and a thin chaotic layer in the SM phase space and we discuss a related conjecture stated in the past. In the first case, the numerically computed probability density function for the action I is well interpolated by the solution of a Fokker-Planck (FP) equation, whereas it presents a nonconstant time shift with respect to the concomitant FP solution in the second case suggesting the presence of an anomalous diffusion time scale. The explicit calculation of a diffusion coefficient for a 4D symplectic map can be useful to understand the slow diffusion observed in celestial mechanics and accelerator physics.
Instituto de Astrofísica de La Plata
Materia
Ciencias Astronómicas
Stochastic Analysis Methods
Numerical Simulations of Chaotic Systems
Classical Transport
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/93540

id SEDICI_f96b5d5fd2f1958686a3328adee9b6a0
oai_identifier_str oai:sedici.unlp.edu.ar:10915/93540
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Stochastic approach to diffusion inside the chaotic layer of a resonanceMestre, Martín FedericoBazzani, ArmandoCincotta, Pablo MiguelGiordano, Claudia MarcelaCiencias AstronómicasStochastic Analysis MethodsNumerical Simulations of Chaotic SystemsClassical TransportWe model chaotic diffusion in a symplectic four-dimensional (4D) map by using the result of a theorem that was developed for stochastically perturbed integrable Hamiltonian systems. We explicitly consider a map defined by a free rotator (FR) coupled to a standard map (SM). We focus on the diffusion process in the action I of the FR, obtaining a seminumerical method to compute the diffusion coefficient. We study two cases corresponding to a thick and a thin chaotic layer in the SM phase space and we discuss a related conjecture stated in the past. In the first case, the numerically computed probability density function for the action I is well interpolated by the solution of a Fokker-Planck (FP) equation, whereas it presents a nonconstant time shift with respect to the concomitant FP solution in the second case suggesting the presence of an anomalous diffusion time scale. The explicit calculation of a diffusion coefficient for a 4D symplectic map can be useful to understand the slow diffusion observed in celestial mechanics and accelerator physics.Instituto de Astrofísica de La Plata2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf12911-12911http://sedici.unlp.edu.ar/handle/10915/93540enginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.012911info:eu-repo/semantics/altIdentifier/issn/1539-3755info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.89.012911info:eu-repo/semantics/altIdentifier/hdl/11336/82374info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:11:21Zoai:sedici.unlp.edu.ar:10915/93540Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:11:21.658SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Stochastic approach to diffusion inside the chaotic layer of a resonance
title Stochastic approach to diffusion inside the chaotic layer of a resonance
spellingShingle Stochastic approach to diffusion inside the chaotic layer of a resonance
Mestre, Martín Federico
Ciencias Astronómicas
Stochastic Analysis Methods
Numerical Simulations of Chaotic Systems
Classical Transport
title_short Stochastic approach to diffusion inside the chaotic layer of a resonance
title_full Stochastic approach to diffusion inside the chaotic layer of a resonance
title_fullStr Stochastic approach to diffusion inside the chaotic layer of a resonance
title_full_unstemmed Stochastic approach to diffusion inside the chaotic layer of a resonance
title_sort Stochastic approach to diffusion inside the chaotic layer of a resonance
dc.creator.none.fl_str_mv Mestre, Martín Federico
Bazzani, Armando
Cincotta, Pablo Miguel
Giordano, Claudia Marcela
author Mestre, Martín Federico
author_facet Mestre, Martín Federico
Bazzani, Armando
Cincotta, Pablo Miguel
Giordano, Claudia Marcela
author_role author
author2 Bazzani, Armando
Cincotta, Pablo Miguel
Giordano, Claudia Marcela
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Stochastic Analysis Methods
Numerical Simulations of Chaotic Systems
Classical Transport
topic Ciencias Astronómicas
Stochastic Analysis Methods
Numerical Simulations of Chaotic Systems
Classical Transport
dc.description.none.fl_txt_mv We model chaotic diffusion in a symplectic four-dimensional (4D) map by using the result of a theorem that was developed for stochastically perturbed integrable Hamiltonian systems. We explicitly consider a map defined by a free rotator (FR) coupled to a standard map (SM). We focus on the diffusion process in the action I of the FR, obtaining a seminumerical method to compute the diffusion coefficient. We study two cases corresponding to a thick and a thin chaotic layer in the SM phase space and we discuss a related conjecture stated in the past. In the first case, the numerically computed probability density function for the action I is well interpolated by the solution of a Fokker-Planck (FP) equation, whereas it presents a nonconstant time shift with respect to the concomitant FP solution in the second case suggesting the presence of an anomalous diffusion time scale. The explicit calculation of a diffusion coefficient for a 4D symplectic map can be useful to understand the slow diffusion observed in celestial mechanics and accelerator physics.
Instituto de Astrofísica de La Plata
description We model chaotic diffusion in a symplectic four-dimensional (4D) map by using the result of a theorem that was developed for stochastically perturbed integrable Hamiltonian systems. We explicitly consider a map defined by a free rotator (FR) coupled to a standard map (SM). We focus on the diffusion process in the action I of the FR, obtaining a seminumerical method to compute the diffusion coefficient. We study two cases corresponding to a thick and a thin chaotic layer in the SM phase space and we discuss a related conjecture stated in the past. In the first case, the numerically computed probability density function for the action I is well interpolated by the solution of a Fokker-Planck (FP) equation, whereas it presents a nonconstant time shift with respect to the concomitant FP solution in the second case suggesting the presence of an anomalous diffusion time scale. The explicit calculation of a diffusion coefficient for a 4D symplectic map can be useful to understand the slow diffusion observed in celestial mechanics and accelerator physics.
publishDate 2014
dc.date.none.fl_str_mv 2014-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/93540
url http://sedici.unlp.edu.ar/handle/10915/93540
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.012911
info:eu-repo/semantics/altIdentifier/issn/1539-3755
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.89.012911
info:eu-repo/semantics/altIdentifier/hdl/11336/82374
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
12911-12911
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064170425909248
score 13.22299