Stochastic approach to diffusion inside the chaotic layer of a resonance
- Autores
- Mestre, Martin Federico; Bazzani, Armando; Cincotta, Pablo Miguel; Giordano, Claudia Marcela
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We model chaotic diffusion in a symplectic four-dimensional (4D) map by using the result of a theorem that was developed for stochastically perturbed integrable Hamiltonian systems. We explicitly consider a map defined by a free rotator (FR) coupled to a standard map (SM). We focus on the diffusion process in the action I of the FR, obtaining a seminumerical method to compute the diffusion coefficient. We study two cases corresponding to a thick and a thin chaotic layer in the SM phase space and we discuss a related conjecture stated in the past. In the first case, the numerically computed probability density function for the action I is well interpolated by the solution of a Fokker-Planck (FP) equation, whereas it presents a nonconstant time shift with respect to the concomitant FP solution in the second case suggesting the presence of an anomalous diffusion time scale. The explicit calculation of a diffusion coefficient for a 4D symplectic map can be useful to understand the slow diffusion observed in celestial mechanics and accelerator physics.
Fil: Mestre, Martin Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Bazzani, Armando. Infn, Sezione Di Bologna; Italia. Dipartimento Di Fisica; Italia
Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Giordano, Claudia Marcela. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina - Materia
-
STOCHASTIC ANALYSIS METHODS
NUMERICAL SIMULATIONS OF CHAOTIC SYSTEMS
CLASSICAL TRANSPORT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/82374
Ver los metadatos del registro completo
id |
CONICETDig_91e5a3df4adfc3305f7e5d281549fa51 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/82374 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Stochastic approach to diffusion inside the chaotic layer of a resonanceMestre, Martin FedericoBazzani, ArmandoCincotta, Pablo MiguelGiordano, Claudia MarcelaSTOCHASTIC ANALYSIS METHODSNUMERICAL SIMULATIONS OF CHAOTIC SYSTEMSCLASSICAL TRANSPORThttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We model chaotic diffusion in a symplectic four-dimensional (4D) map by using the result of a theorem that was developed for stochastically perturbed integrable Hamiltonian systems. We explicitly consider a map defined by a free rotator (FR) coupled to a standard map (SM). We focus on the diffusion process in the action I of the FR, obtaining a seminumerical method to compute the diffusion coefficient. We study two cases corresponding to a thick and a thin chaotic layer in the SM phase space and we discuss a related conjecture stated in the past. In the first case, the numerically computed probability density function for the action I is well interpolated by the solution of a Fokker-Planck (FP) equation, whereas it presents a nonconstant time shift with respect to the concomitant FP solution in the second case suggesting the presence of an anomalous diffusion time scale. The explicit calculation of a diffusion coefficient for a 4D symplectic map can be useful to understand the slow diffusion observed in celestial mechanics and accelerator physics.Fil: Mestre, Martin Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Bazzani, Armando. Infn, Sezione Di Bologna; Italia. Dipartimento Di Fisica; ItaliaFil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Giordano, Claudia Marcela. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaAmerican Physical Society2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/82374Mestre, Martin Federico; Bazzani, Armando; Cincotta, Pablo Miguel; Giordano, Claudia Marcela; Stochastic approach to diffusion inside the chaotic layer of a resonance; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 89; 1; 1-2014; 12911-129111539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.89.012911info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.012911info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:03:57Zoai:ri.conicet.gov.ar:11336/82374instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:03:57.542CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Stochastic approach to diffusion inside the chaotic layer of a resonance |
title |
Stochastic approach to diffusion inside the chaotic layer of a resonance |
spellingShingle |
Stochastic approach to diffusion inside the chaotic layer of a resonance Mestre, Martin Federico STOCHASTIC ANALYSIS METHODS NUMERICAL SIMULATIONS OF CHAOTIC SYSTEMS CLASSICAL TRANSPORT |
title_short |
Stochastic approach to diffusion inside the chaotic layer of a resonance |
title_full |
Stochastic approach to diffusion inside the chaotic layer of a resonance |
title_fullStr |
Stochastic approach to diffusion inside the chaotic layer of a resonance |
title_full_unstemmed |
Stochastic approach to diffusion inside the chaotic layer of a resonance |
title_sort |
Stochastic approach to diffusion inside the chaotic layer of a resonance |
dc.creator.none.fl_str_mv |
Mestre, Martin Federico Bazzani, Armando Cincotta, Pablo Miguel Giordano, Claudia Marcela |
author |
Mestre, Martin Federico |
author_facet |
Mestre, Martin Federico Bazzani, Armando Cincotta, Pablo Miguel Giordano, Claudia Marcela |
author_role |
author |
author2 |
Bazzani, Armando Cincotta, Pablo Miguel Giordano, Claudia Marcela |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
STOCHASTIC ANALYSIS METHODS NUMERICAL SIMULATIONS OF CHAOTIC SYSTEMS CLASSICAL TRANSPORT |
topic |
STOCHASTIC ANALYSIS METHODS NUMERICAL SIMULATIONS OF CHAOTIC SYSTEMS CLASSICAL TRANSPORT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We model chaotic diffusion in a symplectic four-dimensional (4D) map by using the result of a theorem that was developed for stochastically perturbed integrable Hamiltonian systems. We explicitly consider a map defined by a free rotator (FR) coupled to a standard map (SM). We focus on the diffusion process in the action I of the FR, obtaining a seminumerical method to compute the diffusion coefficient. We study two cases corresponding to a thick and a thin chaotic layer in the SM phase space and we discuss a related conjecture stated in the past. In the first case, the numerically computed probability density function for the action I is well interpolated by the solution of a Fokker-Planck (FP) equation, whereas it presents a nonconstant time shift with respect to the concomitant FP solution in the second case suggesting the presence of an anomalous diffusion time scale. The explicit calculation of a diffusion coefficient for a 4D symplectic map can be useful to understand the slow diffusion observed in celestial mechanics and accelerator physics. Fil: Mestre, Martin Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina Fil: Bazzani, Armando. Infn, Sezione Di Bologna; Italia. Dipartimento Di Fisica; Italia Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina Fil: Giordano, Claudia Marcela. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina |
description |
We model chaotic diffusion in a symplectic four-dimensional (4D) map by using the result of a theorem that was developed for stochastically perturbed integrable Hamiltonian systems. We explicitly consider a map defined by a free rotator (FR) coupled to a standard map (SM). We focus on the diffusion process in the action I of the FR, obtaining a seminumerical method to compute the diffusion coefficient. We study two cases corresponding to a thick and a thin chaotic layer in the SM phase space and we discuss a related conjecture stated in the past. In the first case, the numerically computed probability density function for the action I is well interpolated by the solution of a Fokker-Planck (FP) equation, whereas it presents a nonconstant time shift with respect to the concomitant FP solution in the second case suggesting the presence of an anomalous diffusion time scale. The explicit calculation of a diffusion coefficient for a 4D symplectic map can be useful to understand the slow diffusion observed in celestial mechanics and accelerator physics. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/82374 Mestre, Martin Federico; Bazzani, Armando; Cincotta, Pablo Miguel; Giordano, Claudia Marcela; Stochastic approach to diffusion inside the chaotic layer of a resonance; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 89; 1; 1-2014; 12911-12911 1539-3755 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/82374 |
identifier_str_mv |
Mestre, Martin Federico; Bazzani, Armando; Cincotta, Pablo Miguel; Giordano, Claudia Marcela; Stochastic approach to diffusion inside the chaotic layer of a resonance; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 89; 1; 1-2014; 12911-12911 1539-3755 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.89.012911 info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.012911 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980118189834240 |
score |
13.004268 |