Renormalization group structure for sums of variables generated by incipiently chaotic maps
- Autores
- Fuentes, Miguel Angel; Robledo, Alberto
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We look at the limit distributions of sums of deterministic chaotic variables in unimodal maps and find a remarkable renormalization group (RG) structure associated with the operation of increment of summands and rescaling. In this structure-where the only relevant variable is the difference in control parameter from its value at the transition to chaos-the trivial fixed point is the Gaussian distribution and a novel nontrivial fixed point is a multifractal distribution that emulates the Feigenbaum attractor, and is universal in the sense of the latter. The crossover between the two fixed points is explained and the flow toward the trivial fixed point is seen to be comparable to the chaotic band merging sequence. We discuss the nature of the central limit theorem for deterministic variables.
Fil: Fuentes, Miguel Angel. Santa Fe Institute; Estados Unidos. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Pontificia Universidad Católica de Chile; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Robledo, Alberto. Universidad Nacional Autónoma de México; México - Materia
-
NONLINEAR DYNAMICS
RENORMALIZATION GROUP - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/124980
Ver los metadatos del registro completo
id |
CONICETDig_a32da7d5b6648e7c67fc061da7f3ec63 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/124980 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Renormalization group structure for sums of variables generated by incipiently chaotic mapsFuentes, Miguel AngelRobledo, AlbertoNONLINEAR DYNAMICSRENORMALIZATION GROUPhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We look at the limit distributions of sums of deterministic chaotic variables in unimodal maps and find a remarkable renormalization group (RG) structure associated with the operation of increment of summands and rescaling. In this structure-where the only relevant variable is the difference in control parameter from its value at the transition to chaos-the trivial fixed point is the Gaussian distribution and a novel nontrivial fixed point is a multifractal distribution that emulates the Feigenbaum attractor, and is universal in the sense of the latter. The crossover between the two fixed points is explained and the flow toward the trivial fixed point is seen to be comparable to the chaotic band merging sequence. We discuss the nature of the central limit theorem for deterministic variables.Fil: Fuentes, Miguel Angel. Santa Fe Institute; Estados Unidos. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Pontificia Universidad Católica de Chile; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Robledo, Alberto. Universidad Nacional Autónoma de México; MéxicoIOP Publishing2010-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/124980Fuentes, Miguel Angel; Robledo, Alberto; Renormalization group structure for sums of variables generated by incipiently chaotic maps; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2010; 1; 1-2010; 1-131742-5468CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1742-5468/2010/01/P01001/metainfo:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2010/01/P01001info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/0912.2930info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:18Zoai:ri.conicet.gov.ar:11336/124980instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:18.837CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Renormalization group structure for sums of variables generated by incipiently chaotic maps |
title |
Renormalization group structure for sums of variables generated by incipiently chaotic maps |
spellingShingle |
Renormalization group structure for sums of variables generated by incipiently chaotic maps Fuentes, Miguel Angel NONLINEAR DYNAMICS RENORMALIZATION GROUP |
title_short |
Renormalization group structure for sums of variables generated by incipiently chaotic maps |
title_full |
Renormalization group structure for sums of variables generated by incipiently chaotic maps |
title_fullStr |
Renormalization group structure for sums of variables generated by incipiently chaotic maps |
title_full_unstemmed |
Renormalization group structure for sums of variables generated by incipiently chaotic maps |
title_sort |
Renormalization group structure for sums of variables generated by incipiently chaotic maps |
dc.creator.none.fl_str_mv |
Fuentes, Miguel Angel Robledo, Alberto |
author |
Fuentes, Miguel Angel |
author_facet |
Fuentes, Miguel Angel Robledo, Alberto |
author_role |
author |
author2 |
Robledo, Alberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
NONLINEAR DYNAMICS RENORMALIZATION GROUP |
topic |
NONLINEAR DYNAMICS RENORMALIZATION GROUP |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We look at the limit distributions of sums of deterministic chaotic variables in unimodal maps and find a remarkable renormalization group (RG) structure associated with the operation of increment of summands and rescaling. In this structure-where the only relevant variable is the difference in control parameter from its value at the transition to chaos-the trivial fixed point is the Gaussian distribution and a novel nontrivial fixed point is a multifractal distribution that emulates the Feigenbaum attractor, and is universal in the sense of the latter. The crossover between the two fixed points is explained and the flow toward the trivial fixed point is seen to be comparable to the chaotic band merging sequence. We discuss the nature of the central limit theorem for deterministic variables. Fil: Fuentes, Miguel Angel. Santa Fe Institute; Estados Unidos. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Pontificia Universidad Católica de Chile; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: Robledo, Alberto. Universidad Nacional Autónoma de México; México |
description |
We look at the limit distributions of sums of deterministic chaotic variables in unimodal maps and find a remarkable renormalization group (RG) structure associated with the operation of increment of summands and rescaling. In this structure-where the only relevant variable is the difference in control parameter from its value at the transition to chaos-the trivial fixed point is the Gaussian distribution and a novel nontrivial fixed point is a multifractal distribution that emulates the Feigenbaum attractor, and is universal in the sense of the latter. The crossover between the two fixed points is explained and the flow toward the trivial fixed point is seen to be comparable to the chaotic band merging sequence. We discuss the nature of the central limit theorem for deterministic variables. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/124980 Fuentes, Miguel Angel; Robledo, Alberto; Renormalization group structure for sums of variables generated by incipiently chaotic maps; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2010; 1; 1-2010; 1-13 1742-5468 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/124980 |
identifier_str_mv |
Fuentes, Miguel Angel; Robledo, Alberto; Renormalization group structure for sums of variables generated by incipiently chaotic maps; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2010; 1; 1-2010; 1-13 1742-5468 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1742-5468/2010/01/P01001/meta info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2010/01/P01001 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/0912.2930 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613060506943488 |
score |
13.070432 |