Wilson-Fisher fixed points for any dimension
- Autores
- Trinchero, Roberto Carlos
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The critical behavior of a nonlocal scalar field theory is studied. This theory has a nonlocal quartic interaction term which involves a power-β of the Laplacian. The power-β is tuned so as to make that interaction marginal for any dimension. This leads to integer or half-integer values for β, depending on the space dimension. Introducing an auxiliary field, it is shown that the theory can be renormalized by means of local counterterms in the fields. The lowest order Feynman diagrams corresponding to coupling constant renormalization, mass renormalization, and field renormalization are computed. In all cases, a nontrivial IR fixed point is obtained. Remarkably, for dimensions other than 4, field renormalization is required at the one-loop level. For d=4, the theory reduces to the usual local φ4 field theory, and field renormalization is required starting at the two-loop level. The critical exponents ν and η are computed for dimensions 2, 3, 4, and 5. For dimensions greater than 4, the critical exponent η turns out to be negative for ϵ>0, which indicates a violation of the unitarity bounds.
Fil: Trinchero, Roberto Carlos. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Field theory
Renormalization group
Critical behaviour
Non-local - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/123888
Ver los metadatos del registro completo
id |
CONICETDig_7f63e57a8f1a7eae958d04418945a120 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/123888 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Wilson-Fisher fixed points for any dimensionTrinchero, Roberto CarlosField theoryRenormalization groupCritical behaviourNon-localhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The critical behavior of a nonlocal scalar field theory is studied. This theory has a nonlocal quartic interaction term which involves a power-β of the Laplacian. The power-β is tuned so as to make that interaction marginal for any dimension. This leads to integer or half-integer values for β, depending on the space dimension. Introducing an auxiliary field, it is shown that the theory can be renormalized by means of local counterterms in the fields. The lowest order Feynman diagrams corresponding to coupling constant renormalization, mass renormalization, and field renormalization are computed. In all cases, a nontrivial IR fixed point is obtained. Remarkably, for dimensions other than 4, field renormalization is required at the one-loop level. For d=4, the theory reduces to the usual local φ4 field theory, and field renormalization is required starting at the two-loop level. The critical exponents ν and η are computed for dimensions 2, 3, 4, and 5. For dimensions greater than 4, the critical exponent η turns out to be negative for ϵ>0, which indicates a violation of the unitarity bounds.Fil: Trinchero, Roberto Carlos. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2019-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/123888Trinchero, Roberto Carlos; Wilson-Fisher fixed points for any dimension; American Physical Society; Physical Review D; 100; 11; 12-2019; 1-122470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.100.116004info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.100.116004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:07Zoai:ri.conicet.gov.ar:11336/123888instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:07.789CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Wilson-Fisher fixed points for any dimension |
title |
Wilson-Fisher fixed points for any dimension |
spellingShingle |
Wilson-Fisher fixed points for any dimension Trinchero, Roberto Carlos Field theory Renormalization group Critical behaviour Non-local |
title_short |
Wilson-Fisher fixed points for any dimension |
title_full |
Wilson-Fisher fixed points for any dimension |
title_fullStr |
Wilson-Fisher fixed points for any dimension |
title_full_unstemmed |
Wilson-Fisher fixed points for any dimension |
title_sort |
Wilson-Fisher fixed points for any dimension |
dc.creator.none.fl_str_mv |
Trinchero, Roberto Carlos |
author |
Trinchero, Roberto Carlos |
author_facet |
Trinchero, Roberto Carlos |
author_role |
author |
dc.subject.none.fl_str_mv |
Field theory Renormalization group Critical behaviour Non-local |
topic |
Field theory Renormalization group Critical behaviour Non-local |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The critical behavior of a nonlocal scalar field theory is studied. This theory has a nonlocal quartic interaction term which involves a power-β of the Laplacian. The power-β is tuned so as to make that interaction marginal for any dimension. This leads to integer or half-integer values for β, depending on the space dimension. Introducing an auxiliary field, it is shown that the theory can be renormalized by means of local counterterms in the fields. The lowest order Feynman diagrams corresponding to coupling constant renormalization, mass renormalization, and field renormalization are computed. In all cases, a nontrivial IR fixed point is obtained. Remarkably, for dimensions other than 4, field renormalization is required at the one-loop level. For d=4, the theory reduces to the usual local φ4 field theory, and field renormalization is required starting at the two-loop level. The critical exponents ν and η are computed for dimensions 2, 3, 4, and 5. For dimensions greater than 4, the critical exponent η turns out to be negative for ϵ>0, which indicates a violation of the unitarity bounds. Fil: Trinchero, Roberto Carlos. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The critical behavior of a nonlocal scalar field theory is studied. This theory has a nonlocal quartic interaction term which involves a power-β of the Laplacian. The power-β is tuned so as to make that interaction marginal for any dimension. This leads to integer or half-integer values for β, depending on the space dimension. Introducing an auxiliary field, it is shown that the theory can be renormalized by means of local counterterms in the fields. The lowest order Feynman diagrams corresponding to coupling constant renormalization, mass renormalization, and field renormalization are computed. In all cases, a nontrivial IR fixed point is obtained. Remarkably, for dimensions other than 4, field renormalization is required at the one-loop level. For d=4, the theory reduces to the usual local φ4 field theory, and field renormalization is required starting at the two-loop level. The critical exponents ν and η are computed for dimensions 2, 3, 4, and 5. For dimensions greater than 4, the critical exponent η turns out to be negative for ϵ>0, which indicates a violation of the unitarity bounds. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/123888 Trinchero, Roberto Carlos; Wilson-Fisher fixed points for any dimension; American Physical Society; Physical Review D; 100; 11; 12-2019; 1-12 2470-0010 2470-0029 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/123888 |
identifier_str_mv |
Trinchero, Roberto Carlos; Wilson-Fisher fixed points for any dimension; American Physical Society; Physical Review D; 100; 11; 12-2019; 1-12 2470-0010 2470-0029 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.100.116004 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.100.116004 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613204540391424 |
score |
13.070432 |