Wilson-Fisher fixed points for any dimension

Autores
Trinchero, Roberto Carlos
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The critical behavior of a nonlocal scalar field theory is studied. This theory has a nonlocal quartic interaction term which involves a power-β of the Laplacian. The power-β is tuned so as to make that interaction marginal for any dimension. This leads to integer or half-integer values for β, depending on the space dimension. Introducing an auxiliary field, it is shown that the theory can be renormalized by means of local counterterms in the fields. The lowest order Feynman diagrams corresponding to coupling constant renormalization, mass renormalization, and field renormalization are computed. In all cases, a nontrivial IR fixed point is obtained. Remarkably, for dimensions other than 4, field renormalization is required at the one-loop level. For d=4, the theory reduces to the usual local φ4 field theory, and field renormalization is required starting at the two-loop level. The critical exponents ν and η are computed for dimensions 2, 3, 4, and 5. For dimensions greater than 4, the critical exponent η turns out to be negative for ϵ>0, which indicates a violation of the unitarity bounds.
Fil: Trinchero, Roberto Carlos. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Field theory
Renormalization group
Critical behaviour
Non-local
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/123888

id CONICETDig_7f63e57a8f1a7eae958d04418945a120
oai_identifier_str oai:ri.conicet.gov.ar:11336/123888
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Wilson-Fisher fixed points for any dimensionTrinchero, Roberto CarlosField theoryRenormalization groupCritical behaviourNon-localhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The critical behavior of a nonlocal scalar field theory is studied. This theory has a nonlocal quartic interaction term which involves a power-β of the Laplacian. The power-β is tuned so as to make that interaction marginal for any dimension. This leads to integer or half-integer values for β, depending on the space dimension. Introducing an auxiliary field, it is shown that the theory can be renormalized by means of local counterterms in the fields. The lowest order Feynman diagrams corresponding to coupling constant renormalization, mass renormalization, and field renormalization are computed. In all cases, a nontrivial IR fixed point is obtained. Remarkably, for dimensions other than 4, field renormalization is required at the one-loop level. For d=4, the theory reduces to the usual local φ4 field theory, and field renormalization is required starting at the two-loop level. The critical exponents ν and η are computed for dimensions 2, 3, 4, and 5. For dimensions greater than 4, the critical exponent η turns out to be negative for ϵ>0, which indicates a violation of the unitarity bounds.Fil: Trinchero, Roberto Carlos. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2019-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/123888Trinchero, Roberto Carlos; Wilson-Fisher fixed points for any dimension; American Physical Society; Physical Review D; 100; 11; 12-2019; 1-122470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.100.116004info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.100.116004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:07Zoai:ri.conicet.gov.ar:11336/123888instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:07.789CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Wilson-Fisher fixed points for any dimension
title Wilson-Fisher fixed points for any dimension
spellingShingle Wilson-Fisher fixed points for any dimension
Trinchero, Roberto Carlos
Field theory
Renormalization group
Critical behaviour
Non-local
title_short Wilson-Fisher fixed points for any dimension
title_full Wilson-Fisher fixed points for any dimension
title_fullStr Wilson-Fisher fixed points for any dimension
title_full_unstemmed Wilson-Fisher fixed points for any dimension
title_sort Wilson-Fisher fixed points for any dimension
dc.creator.none.fl_str_mv Trinchero, Roberto Carlos
author Trinchero, Roberto Carlos
author_facet Trinchero, Roberto Carlos
author_role author
dc.subject.none.fl_str_mv Field theory
Renormalization group
Critical behaviour
Non-local
topic Field theory
Renormalization group
Critical behaviour
Non-local
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The critical behavior of a nonlocal scalar field theory is studied. This theory has a nonlocal quartic interaction term which involves a power-β of the Laplacian. The power-β is tuned so as to make that interaction marginal for any dimension. This leads to integer or half-integer values for β, depending on the space dimension. Introducing an auxiliary field, it is shown that the theory can be renormalized by means of local counterterms in the fields. The lowest order Feynman diagrams corresponding to coupling constant renormalization, mass renormalization, and field renormalization are computed. In all cases, a nontrivial IR fixed point is obtained. Remarkably, for dimensions other than 4, field renormalization is required at the one-loop level. For d=4, the theory reduces to the usual local φ4 field theory, and field renormalization is required starting at the two-loop level. The critical exponents ν and η are computed for dimensions 2, 3, 4, and 5. For dimensions greater than 4, the critical exponent η turns out to be negative for ϵ>0, which indicates a violation of the unitarity bounds.
Fil: Trinchero, Roberto Carlos. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The critical behavior of a nonlocal scalar field theory is studied. This theory has a nonlocal quartic interaction term which involves a power-β of the Laplacian. The power-β is tuned so as to make that interaction marginal for any dimension. This leads to integer or half-integer values for β, depending on the space dimension. Introducing an auxiliary field, it is shown that the theory can be renormalized by means of local counterterms in the fields. The lowest order Feynman diagrams corresponding to coupling constant renormalization, mass renormalization, and field renormalization are computed. In all cases, a nontrivial IR fixed point is obtained. Remarkably, for dimensions other than 4, field renormalization is required at the one-loop level. For d=4, the theory reduces to the usual local φ4 field theory, and field renormalization is required starting at the two-loop level. The critical exponents ν and η are computed for dimensions 2, 3, 4, and 5. For dimensions greater than 4, the critical exponent η turns out to be negative for ϵ>0, which indicates a violation of the unitarity bounds.
publishDate 2019
dc.date.none.fl_str_mv 2019-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/123888
Trinchero, Roberto Carlos; Wilson-Fisher fixed points for any dimension; American Physical Society; Physical Review D; 100; 11; 12-2019; 1-12
2470-0010
2470-0029
CONICET Digital
CONICET
url http://hdl.handle.net/11336/123888
identifier_str_mv Trinchero, Roberto Carlos; Wilson-Fisher fixed points for any dimension; American Physical Society; Physical Review D; 100; 11; 12-2019; 1-12
2470-0010
2470-0029
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.100.116004
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.100.116004
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613204540391424
score 13.070432