iElectrodes: a comprehensive Open-Source toolbox for Depth and Subdural Grid Electrode Localization

Autores
Blenkmann, Alejandro; Phillips, Holly N.; Princich, Juan P.; Rowe, James B.; Bekinschtein, Tristán A.; Muravchik, Carlos Horacio; Kochen, Silvia
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión enviada
Descripción
The localization of intracranial electrodes is a fundamental step in the analysis of invasive electroencephalography (EEG) recordings in research and clinical practice. The conclusions reached from the analysis of these recordings rely on the accuracy of electrode localization in relationship to brain anatomy. However, currently available techniques for localizing electrodes from magnetic resonance (MR) and/or computerized tomography (CT) images are time consuming and/or limited to particular electrode types or shapes. Here we present iElectrodes, an open-source toolbox that provides robust and accurate semi-automatic localization of both subdural grids and depth electrodes. Using pre- and post-implantation images, the method takes 2–3 min to localize the coordinates in each electrode array and automatically number the electrodes. The proposed pre-processing pipeline allows one to work in a normalized space and to automatically obtain anatomical labels of the localized electrodes without neuroimaging experts. We validated the method with data from 22 patients implanted with a total of 1,242 electrodes. We show that localization distances were within 0.56 mm of those achieved by experienced manual evaluators. iElectrodes provided additional advantages in terms of robustness (even with severe perioperative cerebral distortions), speed (less than half the operator time compared to expert manual localization), simplicity, utility across multiple electrode types (surface and depth electrodes) and all brain regions.
Materia
Ingenierías y Tecnologías
SEEG
ECoG
intracranial EEG
MRI
CT
atlas
epilepsy
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/5301

id CICBA_2ca31e43788575d42bdd684715e05676
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/5301
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling iElectrodes: a comprehensive Open-Source toolbox for Depth and Subdural Grid Electrode LocalizationBlenkmann, AlejandroPhillips, Holly N.Princich, Juan P.Rowe, James B.Bekinschtein, Tristán A.Muravchik, Carlos HoracioKochen, SilviaIngenierías y TecnologíasSEEGECoGintracranial EEGMRICTatlasepilepsyThe localization of intracranial electrodes is a fundamental step in the analysis of invasive electroencephalography (EEG) recordings in research and clinical practice. The conclusions reached from the analysis of these recordings rely on the accuracy of electrode localization in relationship to brain anatomy. However, currently available techniques for localizing electrodes from magnetic resonance (MR) and/or computerized tomography (CT) images are time consuming and/or limited to particular electrode types or shapes. Here we present iElectrodes, an open-source toolbox that provides robust and accurate semi-automatic localization of both subdural grids and depth electrodes. Using pre- and post-implantation images, the method takes 2–3 min to localize the coordinates in each electrode array and automatically number the electrodes. The proposed pre-processing pipeline allows one to work in a normalized space and to automatically obtain anatomical labels of the localized electrodes without neuroimaging experts. We validated the method with data from 22 patients implanted with a total of 1,242 electrodes. We show that localization distances were within 0.56 mm of those achieved by experienced manual evaluators. iElectrodes provided additional advantages in terms of robustness (even with severe perioperative cerebral distortions), speed (less than half the operator time compared to expert manual localization), simplicity, utility across multiple electrode types (surface and depth electrodes) and all brain regions.2017-03-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/5301enginfo:eu-repo/semantics/altIdentifier/doi/10.3389/fninf.2017.00014info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-10-16T09:27:12Zoai:digital.cic.gba.gob.ar:11746/5301Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-10-16 09:27:13.062CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv iElectrodes: a comprehensive Open-Source toolbox for Depth and Subdural Grid Electrode Localization
title iElectrodes: a comprehensive Open-Source toolbox for Depth and Subdural Grid Electrode Localization
spellingShingle iElectrodes: a comprehensive Open-Source toolbox for Depth and Subdural Grid Electrode Localization
Blenkmann, Alejandro
Ingenierías y Tecnologías
SEEG
ECoG
intracranial EEG
MRI
CT
atlas
epilepsy
title_short iElectrodes: a comprehensive Open-Source toolbox for Depth and Subdural Grid Electrode Localization
title_full iElectrodes: a comprehensive Open-Source toolbox for Depth and Subdural Grid Electrode Localization
title_fullStr iElectrodes: a comprehensive Open-Source toolbox for Depth and Subdural Grid Electrode Localization
title_full_unstemmed iElectrodes: a comprehensive Open-Source toolbox for Depth and Subdural Grid Electrode Localization
title_sort iElectrodes: a comprehensive Open-Source toolbox for Depth and Subdural Grid Electrode Localization
dc.creator.none.fl_str_mv Blenkmann, Alejandro
Phillips, Holly N.
Princich, Juan P.
Rowe, James B.
Bekinschtein, Tristán A.
Muravchik, Carlos Horacio
Kochen, Silvia
author Blenkmann, Alejandro
author_facet Blenkmann, Alejandro
Phillips, Holly N.
Princich, Juan P.
Rowe, James B.
Bekinschtein, Tristán A.
Muravchik, Carlos Horacio
Kochen, Silvia
author_role author
author2 Phillips, Holly N.
Princich, Juan P.
Rowe, James B.
Bekinschtein, Tristán A.
Muravchik, Carlos Horacio
Kochen, Silvia
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Ingenierías y Tecnologías
SEEG
ECoG
intracranial EEG
MRI
CT
atlas
epilepsy
topic Ingenierías y Tecnologías
SEEG
ECoG
intracranial EEG
MRI
CT
atlas
epilepsy
dc.description.none.fl_txt_mv The localization of intracranial electrodes is a fundamental step in the analysis of invasive electroencephalography (EEG) recordings in research and clinical practice. The conclusions reached from the analysis of these recordings rely on the accuracy of electrode localization in relationship to brain anatomy. However, currently available techniques for localizing electrodes from magnetic resonance (MR) and/or computerized tomography (CT) images are time consuming and/or limited to particular electrode types or shapes. Here we present iElectrodes, an open-source toolbox that provides robust and accurate semi-automatic localization of both subdural grids and depth electrodes. Using pre- and post-implantation images, the method takes 2–3 min to localize the coordinates in each electrode array and automatically number the electrodes. The proposed pre-processing pipeline allows one to work in a normalized space and to automatically obtain anatomical labels of the localized electrodes without neuroimaging experts. We validated the method with data from 22 patients implanted with a total of 1,242 electrodes. We show that localization distances were within 0.56 mm of those achieved by experienced manual evaluators. iElectrodes provided additional advantages in terms of robustness (even with severe perioperative cerebral distortions), speed (less than half the operator time compared to expert manual localization), simplicity, utility across multiple electrode types (surface and depth electrodes) and all brain regions.
description The localization of intracranial electrodes is a fundamental step in the analysis of invasive electroencephalography (EEG) recordings in research and clinical practice. The conclusions reached from the analysis of these recordings rely on the accuracy of electrode localization in relationship to brain anatomy. However, currently available techniques for localizing electrodes from magnetic resonance (MR) and/or computerized tomography (CT) images are time consuming and/or limited to particular electrode types or shapes. Here we present iElectrodes, an open-source toolbox that provides robust and accurate semi-automatic localization of both subdural grids and depth electrodes. Using pre- and post-implantation images, the method takes 2–3 min to localize the coordinates in each electrode array and automatically number the electrodes. The proposed pre-processing pipeline allows one to work in a normalized space and to automatically obtain anatomical labels of the localized electrodes without neuroimaging experts. We validated the method with data from 22 patients implanted with a total of 1,242 electrodes. We show that localization distances were within 0.56 mm of those achieved by experienced manual evaluators. iElectrodes provided additional advantages in terms of robustness (even with severe perioperative cerebral distortions), speed (less than half the operator time compared to expert manual localization), simplicity, utility across multiple electrode types (surface and depth electrodes) and all brain regions.
publishDate 2017
dc.date.none.fl_str_mv 2017-03-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/submittedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str submittedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/5301
url https://digital.cic.gba.gob.ar/handle/11746/5301
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3389/fninf.2017.00014
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1846142618043416576
score 12.712165