Rapid and efficient localization of depth electrodes and cortical labeling using free and open source medical software in epilepsy surgery candidates
- Autores
- Princich, Juan Pablo; Wassermann, Demian; Latini, Facundo; Oddo, Silvia Andrea; Blenkmann, Alejandro Omar; Seifer, Gustavo; Kochen, Sara Silvia
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Depth intracranial electrodes (IEs) placement is one of the most used procedures to identify the epileptogenic zone (EZ) in surgical treatment of drug resistant epilepsy patients, about 20?30% of this population. IEs localization is therefore a critical issue defining the EZ and its relation with eloquent functional areas. That information is then used to target the resective surgery and has great potential to affect outcome. We designed a methodological procedure intended to avoid the need for highly specialized medical resources and reduce time to identify the anatomical location of IEs, during the first instances of intracranial EEG recordings. This workflow is based on established open source software; 3D Slicer and Freesurfer that uses MRI and Post-implant CT fusion for the localization of IEs and its relation with automatic labeled surrounding cortex. To test this hypothesis we assessed the time elapsed between the surgical implantation process and the final anatomical localization of IEs by means of our proposed method compared against traditional visual analysis of raw post-implant imaging in two groups of patients. All IEs were identified in the first 24 H (6?24 H) of implantation using our method in 4 patients of the first group. For the control group; all IEs were identified by experts with an overall time range of 36 h to 3 days using traditional visual analysis. It included (7 patients), 3 patients implanted with IEs and the same 4 patients from the first group. Time to localization was restrained in this group by the specialized personnel and the image quality available. To validate our method; we trained two inexperienced operators to assess the position of IEs contacts on four patients (5 IEs) using the proposed method. We quantified the discrepancies between operators and we also assessed the efficiency of our method to define the EZ comparing the findings against the results of traditional analysis.
Fil: Princich, Juan Pablo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos; Argentina
Fil: Wassermann, Demian. Harvard Medical School; Estados Unidos de América;
Fil: Latini, Facundo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos; Argentina
Fil: Oddo, Silvia Andrea. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos; Argentina
Fil: Blenkmann, Alejandro Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurcs. ; Argentina
Fil: Seifer, Gustavo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos; Argentina
Fil: Kochen, Sara Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurcs. ; Argentina - Materia
-
epilepsy
electrodes
seeg
MRI
localization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/1246
Ver los metadatos del registro completo
id |
CONICETDig_1ec0e01a324546a22f2f474a2830f513 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/1246 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Rapid and efficient localization of depth electrodes and cortical labeling using free and open source medical software in epilepsy surgery candidatesPrincich, Juan PabloWassermann, DemianLatini, FacundoOddo, Silvia AndreaBlenkmann, Alejandro OmarSeifer, GustavoKochen, Sara SilviaepilepsyelectrodesseegMRIlocalizationhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Depth intracranial electrodes (IEs) placement is one of the most used procedures to identify the epileptogenic zone (EZ) in surgical treatment of drug resistant epilepsy patients, about 20?30% of this population. IEs localization is therefore a critical issue defining the EZ and its relation with eloquent functional areas. That information is then used to target the resective surgery and has great potential to affect outcome. We designed a methodological procedure intended to avoid the need for highly specialized medical resources and reduce time to identify the anatomical location of IEs, during the first instances of intracranial EEG recordings. This workflow is based on established open source software; 3D Slicer and Freesurfer that uses MRI and Post-implant CT fusion for the localization of IEs and its relation with automatic labeled surrounding cortex. To test this hypothesis we assessed the time elapsed between the surgical implantation process and the final anatomical localization of IEs by means of our proposed method compared against traditional visual analysis of raw post-implant imaging in two groups of patients. All IEs were identified in the first 24 H (6?24 H) of implantation using our method in 4 patients of the first group. For the control group; all IEs were identified by experts with an overall time range of 36 h to 3 days using traditional visual analysis. It included (7 patients), 3 patients implanted with IEs and the same 4 patients from the first group. Time to localization was restrained in this group by the specialized personnel and the image quality available. To validate our method; we trained two inexperienced operators to assess the position of IEs contacts on four patients (5 IEs) using the proposed method. We quantified the discrepancies between operators and we also assessed the efficiency of our method to define the EZ comparing the findings against the results of traditional analysis.Fil: Princich, Juan Pablo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos; ArgentinaFil: Wassermann, Demian. Harvard Medical School; Estados Unidos de América;Fil: Latini, Facundo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos; ArgentinaFil: Oddo, Silvia Andrea. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos; ArgentinaFil: Blenkmann, Alejandro Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurcs. ; ArgentinaFil: Seifer, Gustavo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos; ArgentinaFil: Kochen, Sara Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurcs. ; ArgentinaFrontiers Res Found2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/1246Princich, Juan Pablo; Wassermann, Demian; Latini, Facundo; Oddo, Silvia Andrea; Blenkmann, Alejandro Omar; et al.; Rapid and efficient localization of depth electrodes and cortical labeling using free and open source medical software in epilepsy surgery candidates; Frontiers Res Found; Frontiers In Human Neuroscience; 7; 12-2013; 260-2701662-5161enginfo:eu-repo/semantics/altIdentifier/doi/10.3389/fnins.2013.00260&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&journalName=Frontiers_in_Neurosciinfo:eu-repo/semantics/altIdentifier/url/http://www.frontiersin.org/Journal/Abstract.aspx?s=1304&name=brain_imaging_methods&ART_DOI=10.3389/fnins.2013.00260&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&journalName=Frontiers_in_Neurosciinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:34Zoai:ri.conicet.gov.ar:11336/1246instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:34.525CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Rapid and efficient localization of depth electrodes and cortical labeling using free and open source medical software in epilepsy surgery candidates |
title |
Rapid and efficient localization of depth electrodes and cortical labeling using free and open source medical software in epilepsy surgery candidates |
spellingShingle |
Rapid and efficient localization of depth electrodes and cortical labeling using free and open source medical software in epilepsy surgery candidates Princich, Juan Pablo epilepsy electrodes seeg MRI localization |
title_short |
Rapid and efficient localization of depth electrodes and cortical labeling using free and open source medical software in epilepsy surgery candidates |
title_full |
Rapid and efficient localization of depth electrodes and cortical labeling using free and open source medical software in epilepsy surgery candidates |
title_fullStr |
Rapid and efficient localization of depth electrodes and cortical labeling using free and open source medical software in epilepsy surgery candidates |
title_full_unstemmed |
Rapid and efficient localization of depth electrodes and cortical labeling using free and open source medical software in epilepsy surgery candidates |
title_sort |
Rapid and efficient localization of depth electrodes and cortical labeling using free and open source medical software in epilepsy surgery candidates |
dc.creator.none.fl_str_mv |
Princich, Juan Pablo Wassermann, Demian Latini, Facundo Oddo, Silvia Andrea Blenkmann, Alejandro Omar Seifer, Gustavo Kochen, Sara Silvia |
author |
Princich, Juan Pablo |
author_facet |
Princich, Juan Pablo Wassermann, Demian Latini, Facundo Oddo, Silvia Andrea Blenkmann, Alejandro Omar Seifer, Gustavo Kochen, Sara Silvia |
author_role |
author |
author2 |
Wassermann, Demian Latini, Facundo Oddo, Silvia Andrea Blenkmann, Alejandro Omar Seifer, Gustavo Kochen, Sara Silvia |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
epilepsy electrodes seeg MRI localization |
topic |
epilepsy electrodes seeg MRI localization |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Depth intracranial electrodes (IEs) placement is one of the most used procedures to identify the epileptogenic zone (EZ) in surgical treatment of drug resistant epilepsy patients, about 20?30% of this population. IEs localization is therefore a critical issue defining the EZ and its relation with eloquent functional areas. That information is then used to target the resective surgery and has great potential to affect outcome. We designed a methodological procedure intended to avoid the need for highly specialized medical resources and reduce time to identify the anatomical location of IEs, during the first instances of intracranial EEG recordings. This workflow is based on established open source software; 3D Slicer and Freesurfer that uses MRI and Post-implant CT fusion for the localization of IEs and its relation with automatic labeled surrounding cortex. To test this hypothesis we assessed the time elapsed between the surgical implantation process and the final anatomical localization of IEs by means of our proposed method compared against traditional visual analysis of raw post-implant imaging in two groups of patients. All IEs were identified in the first 24 H (6?24 H) of implantation using our method in 4 patients of the first group. For the control group; all IEs were identified by experts with an overall time range of 36 h to 3 days using traditional visual analysis. It included (7 patients), 3 patients implanted with IEs and the same 4 patients from the first group. Time to localization was restrained in this group by the specialized personnel and the image quality available. To validate our method; we trained two inexperienced operators to assess the position of IEs contacts on four patients (5 IEs) using the proposed method. We quantified the discrepancies between operators and we also assessed the efficiency of our method to define the EZ comparing the findings against the results of traditional analysis. Fil: Princich, Juan Pablo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos; Argentina Fil: Wassermann, Demian. Harvard Medical School; Estados Unidos de América; Fil: Latini, Facundo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos; Argentina Fil: Oddo, Silvia Andrea. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos; Argentina Fil: Blenkmann, Alejandro Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurcs. ; Argentina Fil: Seifer, Gustavo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos; Argentina Fil: Kochen, Sara Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurcs. ; Argentina |
description |
Depth intracranial electrodes (IEs) placement is one of the most used procedures to identify the epileptogenic zone (EZ) in surgical treatment of drug resistant epilepsy patients, about 20?30% of this population. IEs localization is therefore a critical issue defining the EZ and its relation with eloquent functional areas. That information is then used to target the resective surgery and has great potential to affect outcome. We designed a methodological procedure intended to avoid the need for highly specialized medical resources and reduce time to identify the anatomical location of IEs, during the first instances of intracranial EEG recordings. This workflow is based on established open source software; 3D Slicer and Freesurfer that uses MRI and Post-implant CT fusion for the localization of IEs and its relation with automatic labeled surrounding cortex. To test this hypothesis we assessed the time elapsed between the surgical implantation process and the final anatomical localization of IEs by means of our proposed method compared against traditional visual analysis of raw post-implant imaging in two groups of patients. All IEs were identified in the first 24 H (6?24 H) of implantation using our method in 4 patients of the first group. For the control group; all IEs were identified by experts with an overall time range of 36 h to 3 days using traditional visual analysis. It included (7 patients), 3 patients implanted with IEs and the same 4 patients from the first group. Time to localization was restrained in this group by the specialized personnel and the image quality available. To validate our method; we trained two inexperienced operators to assess the position of IEs contacts on four patients (5 IEs) using the proposed method. We quantified the discrepancies between operators and we also assessed the efficiency of our method to define the EZ comparing the findings against the results of traditional analysis. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/1246 Princich, Juan Pablo; Wassermann, Demian; Latini, Facundo; Oddo, Silvia Andrea; Blenkmann, Alejandro Omar; et al.; Rapid and efficient localization of depth electrodes and cortical labeling using free and open source medical software in epilepsy surgery candidates; Frontiers Res Found; Frontiers In Human Neuroscience; 7; 12-2013; 260-270 1662-5161 |
url |
http://hdl.handle.net/11336/1246 |
identifier_str_mv |
Princich, Juan Pablo; Wassermann, Demian; Latini, Facundo; Oddo, Silvia Andrea; Blenkmann, Alejandro Omar; et al.; Rapid and efficient localization of depth electrodes and cortical labeling using free and open source medical software in epilepsy surgery candidates; Frontiers Res Found; Frontiers In Human Neuroscience; 7; 12-2013; 260-270 1662-5161 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3389/fnins.2013.00260&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&journalName=Frontiers_in_Neurosci info:eu-repo/semantics/altIdentifier/url/http://www.frontiersin.org/Journal/Abstract.aspx?s=1304&name=brain_imaging_methods&ART_DOI=10.3389/fnins.2013.00260&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&journalName=Frontiers_in_Neurosci |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Res Found |
publisher.none.fl_str_mv |
Frontiers Res Found |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269352811823104 |
score |
13.13397 |