Multilinear subspace regression: an orthogonal tensor decomposition approach
- Autores
- Zhao, Qibin; Caiafa, César Federico; Mandic, Danilo P.; Zhang, Liqing; Ball, Tonio; Schulze Bonhage, Andreas; Cichocki, Andrzej
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- A multilinear subspace regression model based on so called latent variable decomposition is introduced. Unlike standard regression methods which typically employ matrix (2D) data representations followed by vector subspace transformations, the proposed approach uses tensor subspace transformations to model common latent variables across both the independent and dependent data. The proposed approach aims to maximize the correlation between the so derived latent variables and is shown to be suitable for the prediction of multidimensional dependent data from multidimensional independent data, where for the estimation of the latent variables we introduce an algorithm based on Multilinear Singular Value Decomposition (MSVD) on a specially defined cross-covariance tensor. It is next shown that in this way we are also able to unify the existing Partial Least Squares (PLS) and N-way PLS regression algorithms within the same framework. Simulations on benchmark synthetic data confirm the advantages of the proposed approach, in terms of its predictive ability and robustness, especially for small sample sizes. The potential of the proposed technique is further illustrated on a real world task of the decoding of human intracranial electrocorticogram (ECoG) from a simultaneously recorded scalp electroencephalograph (EEG).
Fil: Zhao, Qibin. Riken. Brain Science Institute; Japón
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Mandic, Danilo P.. Imperial College Of Science And Technology; Reino Unido
Fil: Zhang, Liqing. Shanghai Jiao Tong University; China
Fil: Ball, Tonio. University Of Freiburg; Alemania
Fil: Schulze Bonhage, Andreas. University Of Freidburg; Alemania
Fil: Cichocki, Andrzej. Riken. Brain Science Institute; Japón
25th Annual Conference on Neural Information Processing Systems
Granada
España
Neural Information Processing Systems Foundation - Materia
-
Tensor network
Linear Regression
EEG
EcoG - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/225339
Ver los metadatos del registro completo
id |
CONICETDig_7d76e9bed70e32f494a61953832de1cf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/225339 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multilinear subspace regression: an orthogonal tensor decomposition approachZhao, QibinCaiafa, César FedericoMandic, Danilo P.Zhang, LiqingBall, TonioSchulze Bonhage, AndreasCichocki, AndrzejTensor networkLinear RegressionEEGEcoGhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2A multilinear subspace regression model based on so called latent variable decomposition is introduced. Unlike standard regression methods which typically employ matrix (2D) data representations followed by vector subspace transformations, the proposed approach uses tensor subspace transformations to model common latent variables across both the independent and dependent data. The proposed approach aims to maximize the correlation between the so derived latent variables and is shown to be suitable for the prediction of multidimensional dependent data from multidimensional independent data, where for the estimation of the latent variables we introduce an algorithm based on Multilinear Singular Value Decomposition (MSVD) on a specially defined cross-covariance tensor. It is next shown that in this way we are also able to unify the existing Partial Least Squares (PLS) and N-way PLS regression algorithms within the same framework. Simulations on benchmark synthetic data confirm the advantages of the proposed approach, in terms of its predictive ability and robustness, especially for small sample sizes. The potential of the proposed technique is further illustrated on a real world task of the decoding of human intracranial electrocorticogram (ECoG) from a simultaneously recorded scalp electroencephalograph (EEG).Fil: Zhao, Qibin. Riken. Brain Science Institute; JapónFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Mandic, Danilo P.. Imperial College Of Science And Technology; Reino UnidoFil: Zhang, Liqing. Shanghai Jiao Tong University; ChinaFil: Ball, Tonio. University Of Freiburg; AlemaniaFil: Schulze Bonhage, Andreas. University Of Freidburg; AlemaniaFil: Cichocki, Andrzej. Riken. Brain Science Institute; Japón25th Annual Conference on Neural Information Processing SystemsGranadaEspañaNeural Information Processing Systems FoundationCurran Associates Inc.2011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectConferenciaBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/225339Multilinear subspace regression: an orthogonal tensor decomposition approach; 25th Annual Conference on Neural Information Processing Systems; Granada; España; 2011; 1-99781618395993CONICET DigitalCONICETenghttps://nips.cc/Conferences/2011info:eu-repo/semantics/altIdentifier/url/https://proceedings.neurips.cc/paper_files/paper/2011/file/1343777b8ead1cef5a79b78a1a48d805-Paper.pdfinfo:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/doi/10.5555/2986459.2986601info:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/doi/proceedings/10.5555/2986459Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:23:22Zoai:ri.conicet.gov.ar:11336/225339instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:23:22.928CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multilinear subspace regression: an orthogonal tensor decomposition approach |
title |
Multilinear subspace regression: an orthogonal tensor decomposition approach |
spellingShingle |
Multilinear subspace regression: an orthogonal tensor decomposition approach Zhao, Qibin Tensor network Linear Regression EEG EcoG |
title_short |
Multilinear subspace regression: an orthogonal tensor decomposition approach |
title_full |
Multilinear subspace regression: an orthogonal tensor decomposition approach |
title_fullStr |
Multilinear subspace regression: an orthogonal tensor decomposition approach |
title_full_unstemmed |
Multilinear subspace regression: an orthogonal tensor decomposition approach |
title_sort |
Multilinear subspace regression: an orthogonal tensor decomposition approach |
dc.creator.none.fl_str_mv |
Zhao, Qibin Caiafa, César Federico Mandic, Danilo P. Zhang, Liqing Ball, Tonio Schulze Bonhage, Andreas Cichocki, Andrzej |
author |
Zhao, Qibin |
author_facet |
Zhao, Qibin Caiafa, César Federico Mandic, Danilo P. Zhang, Liqing Ball, Tonio Schulze Bonhage, Andreas Cichocki, Andrzej |
author_role |
author |
author2 |
Caiafa, César Federico Mandic, Danilo P. Zhang, Liqing Ball, Tonio Schulze Bonhage, Andreas Cichocki, Andrzej |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Tensor network Linear Regression EEG EcoG |
topic |
Tensor network Linear Regression EEG EcoG |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
A multilinear subspace regression model based on so called latent variable decomposition is introduced. Unlike standard regression methods which typically employ matrix (2D) data representations followed by vector subspace transformations, the proposed approach uses tensor subspace transformations to model common latent variables across both the independent and dependent data. The proposed approach aims to maximize the correlation between the so derived latent variables and is shown to be suitable for the prediction of multidimensional dependent data from multidimensional independent data, where for the estimation of the latent variables we introduce an algorithm based on Multilinear Singular Value Decomposition (MSVD) on a specially defined cross-covariance tensor. It is next shown that in this way we are also able to unify the existing Partial Least Squares (PLS) and N-way PLS regression algorithms within the same framework. Simulations on benchmark synthetic data confirm the advantages of the proposed approach, in terms of its predictive ability and robustness, especially for small sample sizes. The potential of the proposed technique is further illustrated on a real world task of the decoding of human intracranial electrocorticogram (ECoG) from a simultaneously recorded scalp electroencephalograph (EEG). Fil: Zhao, Qibin. Riken. Brain Science Institute; Japón Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina Fil: Mandic, Danilo P.. Imperial College Of Science And Technology; Reino Unido Fil: Zhang, Liqing. Shanghai Jiao Tong University; China Fil: Ball, Tonio. University Of Freiburg; Alemania Fil: Schulze Bonhage, Andreas. University Of Freidburg; Alemania Fil: Cichocki, Andrzej. Riken. Brain Science Institute; Japón 25th Annual Conference on Neural Information Processing Systems Granada España Neural Information Processing Systems Foundation |
description |
A multilinear subspace regression model based on so called latent variable decomposition is introduced. Unlike standard regression methods which typically employ matrix (2D) data representations followed by vector subspace transformations, the proposed approach uses tensor subspace transformations to model common latent variables across both the independent and dependent data. The proposed approach aims to maximize the correlation between the so derived latent variables and is shown to be suitable for the prediction of multidimensional dependent data from multidimensional independent data, where for the estimation of the latent variables we introduce an algorithm based on Multilinear Singular Value Decomposition (MSVD) on a specially defined cross-covariance tensor. It is next shown that in this way we are also able to unify the existing Partial Least Squares (PLS) and N-way PLS regression algorithms within the same framework. Simulations on benchmark synthetic data confirm the advantages of the proposed approach, in terms of its predictive ability and robustness, especially for small sample sizes. The potential of the proposed technique is further illustrated on a real world task of the decoding of human intracranial electrocorticogram (ECoG) from a simultaneously recorded scalp electroencephalograph (EEG). |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Conferencia Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/225339 Multilinear subspace regression: an orthogonal tensor decomposition approach; 25th Annual Conference on Neural Information Processing Systems; Granada; España; 2011; 1-9 9781618395993 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/225339 |
identifier_str_mv |
Multilinear subspace regression: an orthogonal tensor decomposition approach; 25th Annual Conference on Neural Information Processing Systems; Granada; España; 2011; 1-9 9781618395993 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://nips.cc/Conferences/2011 info:eu-repo/semantics/altIdentifier/url/https://proceedings.neurips.cc/paper_files/paper/2011/file/1343777b8ead1cef5a79b78a1a48d805-Paper.pdf info:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/doi/10.5555/2986459.2986601 info:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/doi/proceedings/10.5555/2986459 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Curran Associates Inc. |
publisher.none.fl_str_mv |
Curran Associates Inc. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082642749947904 |
score |
13.22299 |