Extension of vector-valued integral polynomials
- Autores
- Carando, D.; Lassalle, S.
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the extendibility of integral vector-valued polynomials on Banach spaces. We prove that an X-valued Pietsch-integral polynomial on E extends to an X-valued Pietsch-integral polynomial on any space F containing E, with the same integral norm. This is not the case for Grothendieck-integral polynomials: they do not always extend to X-valued Grothendieck-integral polynomials. However, they are extendible to X-valued polynomials. The Aron-Berner extension of an integral polynomial is also studied. A canonical integral representation is given for domains not containing ℓ1. © 2004 Elsevier Inc. All rights reserved.
Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Anal. Appl. 2005;307(1):77-85
- Materia
-
Extendibility
Integral polynomials - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0022247X_v307_n1_p77_Carando
Ver los metadatos del registro completo
| id |
BDUBAFCEN_fb179ef370174b7adc78008b4962707a |
|---|---|
| oai_identifier_str |
paperaa:paper_0022247X_v307_n1_p77_Carando |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
Extension of vector-valued integral polynomialsCarando, D.Lassalle, S.ExtendibilityIntegral polynomialsWe study the extendibility of integral vector-valued polynomials on Banach spaces. We prove that an X-valued Pietsch-integral polynomial on E extends to an X-valued Pietsch-integral polynomial on any space F containing E, with the same integral norm. This is not the case for Grothendieck-integral polynomials: they do not always extend to X-valued Grothendieck-integral polynomials. However, they are extendible to X-valued polynomials. The Aron-Berner extension of an integral polynomial is also studied. A canonical integral representation is given for domains not containing ℓ1. © 2004 Elsevier Inc. All rights reserved.Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v307_n1_p77_CarandoJ. Math. Anal. Appl. 2005;307(1):77-85reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-23T11:18:21Zpaperaa:paper_0022247X_v307_n1_p77_CarandoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-23 11:18:23.349Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
Extension of vector-valued integral polynomials |
| title |
Extension of vector-valued integral polynomials |
| spellingShingle |
Extension of vector-valued integral polynomials Carando, D. Extendibility Integral polynomials |
| title_short |
Extension of vector-valued integral polynomials |
| title_full |
Extension of vector-valued integral polynomials |
| title_fullStr |
Extension of vector-valued integral polynomials |
| title_full_unstemmed |
Extension of vector-valued integral polynomials |
| title_sort |
Extension of vector-valued integral polynomials |
| dc.creator.none.fl_str_mv |
Carando, D. Lassalle, S. |
| author |
Carando, D. |
| author_facet |
Carando, D. Lassalle, S. |
| author_role |
author |
| author2 |
Lassalle, S. |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Extendibility Integral polynomials |
| topic |
Extendibility Integral polynomials |
| dc.description.none.fl_txt_mv |
We study the extendibility of integral vector-valued polynomials on Banach spaces. We prove that an X-valued Pietsch-integral polynomial on E extends to an X-valued Pietsch-integral polynomial on any space F containing E, with the same integral norm. This is not the case for Grothendieck-integral polynomials: they do not always extend to X-valued Grothendieck-integral polynomials. However, they are extendible to X-valued polynomials. The Aron-Berner extension of an integral polynomial is also studied. A canonical integral representation is given for domains not containing ℓ1. © 2004 Elsevier Inc. All rights reserved. Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
We study the extendibility of integral vector-valued polynomials on Banach spaces. We prove that an X-valued Pietsch-integral polynomial on E extends to an X-valued Pietsch-integral polynomial on any space F containing E, with the same integral norm. This is not the case for Grothendieck-integral polynomials: they do not always extend to X-valued Grothendieck-integral polynomials. However, they are extendible to X-valued polynomials. The Aron-Berner extension of an integral polynomial is also studied. A canonical integral representation is given for domains not containing ℓ1. © 2004 Elsevier Inc. All rights reserved. |
| publishDate |
2005 |
| dc.date.none.fl_str_mv |
2005 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0022247X_v307_n1_p77_Carando |
| url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v307_n1_p77_Carando |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
J. Math. Anal. Appl. 2005;307(1):77-85 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1846784878051328000 |
| score |
12.982451 |