Extreme and Exposed Points of Spaces of Integral Polynomials
- Autores
- Boyd, Christopher; Lassalle, Silvia Beatriz
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that if E is a real Banach space such that E has the approximation property and such that 1 → n,s, E, then the set of extreme points of the unit ball of PI (nE) is equal to {±φn : φ ∈ E , φ = 1}. Under the additional assumption that E has a countable norming set, we see that the set of exposed points of the unit ball of PI (nE) is also equal to {±φn : φ ∈ E , φ = 1}.
Fil: Boyd, Christopher. University College Dublin; Irlanda
Fil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
INTEGRAL POLYNOMIALS
EXTREME AND EXPOSED POINTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15030
Ver los metadatos del registro completo
| id |
CONICETDig_cf0643bf3644ab697ba54da49736562e |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15030 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Extreme and Exposed Points of Spaces of Integral PolynomialsBoyd, ChristopherLassalle, Silvia BeatrizINTEGRAL POLYNOMIALSEXTREME AND EXPOSED POINTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that if E is a real Banach space such that E has the approximation property and such that 1 → n,s, E, then the set of extreme points of the unit ball of PI (nE) is equal to {±φn : φ ∈ E , φ = 1}. Under the additional assumption that E has a countable norming set, we see that the set of exposed points of the unit ball of PI (nE) is also equal to {±φn : φ ∈ E , φ = 1}.Fil: Boyd, Christopher. University College Dublin; IrlandaFil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAmerican Mathematical Society2010-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15030Boyd, Christopher; Lassalle, Silvia Beatriz; Extreme and Exposed Points of Spaces of Integral Polynomials; American Mathematical Society; Proceedings Of The American Mathematical Society; 138; 4; 4-2010; 1415-14200002-9939enginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2010-138-04/S0002-9939-09-10158-2/S0002-9939-09-10158-2.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:08:40Zoai:ri.conicet.gov.ar:11336/15030instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:08:40.309CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Extreme and Exposed Points of Spaces of Integral Polynomials |
| title |
Extreme and Exposed Points of Spaces of Integral Polynomials |
| spellingShingle |
Extreme and Exposed Points of Spaces of Integral Polynomials Boyd, Christopher INTEGRAL POLYNOMIALS EXTREME AND EXPOSED POINTS |
| title_short |
Extreme and Exposed Points of Spaces of Integral Polynomials |
| title_full |
Extreme and Exposed Points of Spaces of Integral Polynomials |
| title_fullStr |
Extreme and Exposed Points of Spaces of Integral Polynomials |
| title_full_unstemmed |
Extreme and Exposed Points of Spaces of Integral Polynomials |
| title_sort |
Extreme and Exposed Points of Spaces of Integral Polynomials |
| dc.creator.none.fl_str_mv |
Boyd, Christopher Lassalle, Silvia Beatriz |
| author |
Boyd, Christopher |
| author_facet |
Boyd, Christopher Lassalle, Silvia Beatriz |
| author_role |
author |
| author2 |
Lassalle, Silvia Beatriz |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
INTEGRAL POLYNOMIALS EXTREME AND EXPOSED POINTS |
| topic |
INTEGRAL POLYNOMIALS EXTREME AND EXPOSED POINTS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We show that if E is a real Banach space such that E has the approximation property and such that 1 → n,s, E, then the set of extreme points of the unit ball of PI (nE) is equal to {±φn : φ ∈ E , φ = 1}. Under the additional assumption that E has a countable norming set, we see that the set of exposed points of the unit ball of PI (nE) is also equal to {±φn : φ ∈ E , φ = 1}. Fil: Boyd, Christopher. University College Dublin; Irlanda Fil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
| description |
We show that if E is a real Banach space such that E has the approximation property and such that 1 → n,s, E, then the set of extreme points of the unit ball of PI (nE) is equal to {±φn : φ ∈ E , φ = 1}. Under the additional assumption that E has a countable norming set, we see that the set of exposed points of the unit ball of PI (nE) is also equal to {±φn : φ ∈ E , φ = 1}. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15030 Boyd, Christopher; Lassalle, Silvia Beatriz; Extreme and Exposed Points of Spaces of Integral Polynomials; American Mathematical Society; Proceedings Of The American Mathematical Society; 138; 4; 4-2010; 1415-1420 0002-9939 |
| url |
http://hdl.handle.net/11336/15030 |
| identifier_str_mv |
Boyd, Christopher; Lassalle, Silvia Beatriz; Extreme and Exposed Points of Spaces of Integral Polynomials; American Mathematical Society; Proceedings Of The American Mathematical Society; 138; 4; 4-2010; 1415-1420 0002-9939 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2010-138-04/S0002-9939-09-10158-2/S0002-9939-09-10158-2.pdf |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Mathematical Society |
| publisher.none.fl_str_mv |
American Mathematical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782459690090496 |
| score |
12.982451 |