Extreme and Exposed Points of Spaces of Integral Polynomials

Autores
Boyd, Christopher; Lassalle, Silvia Beatriz
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show that if E is a real Banach space such that E has the approximation property and such that 1 → n,s, E, then the set of extreme points of the unit ball of PI (nE) is equal to {±φn : φ ∈ E , φ = 1}. Under the additional assumption that E has a countable norming set, we see that the set of exposed points of the unit ball of PI (nE) is also equal to {±φn : φ ∈ E , φ = 1}.
Fil: Boyd, Christopher. University College Dublin; Irlanda
Fil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
INTEGRAL POLYNOMIALS
EXTREME AND EXPOSED POINTS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15030

id CONICETDig_cf0643bf3644ab697ba54da49736562e
oai_identifier_str oai:ri.conicet.gov.ar:11336/15030
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Extreme and Exposed Points of Spaces of Integral PolynomialsBoyd, ChristopherLassalle, Silvia BeatrizINTEGRAL POLYNOMIALSEXTREME AND EXPOSED POINTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that if E is a real Banach space such that E has the approximation property and such that 1 → n,s, E, then the set of extreme points of the unit ball of PI (nE) is equal to {±φn : φ ∈ E , φ = 1}. Under the additional assumption that E has a countable norming set, we see that the set of exposed points of the unit ball of PI (nE) is also equal to {±φn : φ ∈ E , φ = 1}.Fil: Boyd, Christopher. University College Dublin; IrlandaFil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAmerican Mathematical Society2010-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15030Boyd, Christopher; Lassalle, Silvia Beatriz; Extreme and Exposed Points of Spaces of Integral Polynomials; American Mathematical Society; Proceedings Of The American Mathematical Society; 138; 4; 4-2010; 1415-14200002-9939enginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2010-138-04/S0002-9939-09-10158-2/S0002-9939-09-10158-2.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:08:40Zoai:ri.conicet.gov.ar:11336/15030instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:08:40.309CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Extreme and Exposed Points of Spaces of Integral Polynomials
title Extreme and Exposed Points of Spaces of Integral Polynomials
spellingShingle Extreme and Exposed Points of Spaces of Integral Polynomials
Boyd, Christopher
INTEGRAL POLYNOMIALS
EXTREME AND EXPOSED POINTS
title_short Extreme and Exposed Points of Spaces of Integral Polynomials
title_full Extreme and Exposed Points of Spaces of Integral Polynomials
title_fullStr Extreme and Exposed Points of Spaces of Integral Polynomials
title_full_unstemmed Extreme and Exposed Points of Spaces of Integral Polynomials
title_sort Extreme and Exposed Points of Spaces of Integral Polynomials
dc.creator.none.fl_str_mv Boyd, Christopher
Lassalle, Silvia Beatriz
author Boyd, Christopher
author_facet Boyd, Christopher
Lassalle, Silvia Beatriz
author_role author
author2 Lassalle, Silvia Beatriz
author2_role author
dc.subject.none.fl_str_mv INTEGRAL POLYNOMIALS
EXTREME AND EXPOSED POINTS
topic INTEGRAL POLYNOMIALS
EXTREME AND EXPOSED POINTS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We show that if E is a real Banach space such that E has the approximation property and such that 1 → n,s, E, then the set of extreme points of the unit ball of PI (nE) is equal to {±φn : φ ∈ E , φ = 1}. Under the additional assumption that E has a countable norming set, we see that the set of exposed points of the unit ball of PI (nE) is also equal to {±φn : φ ∈ E , φ = 1}.
Fil: Boyd, Christopher. University College Dublin; Irlanda
Fil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description We show that if E is a real Banach space such that E has the approximation property and such that 1 → n,s, E, then the set of extreme points of the unit ball of PI (nE) is equal to {±φn : φ ∈ E , φ = 1}. Under the additional assumption that E has a countable norming set, we see that the set of exposed points of the unit ball of PI (nE) is also equal to {±φn : φ ∈ E , φ = 1}.
publishDate 2010
dc.date.none.fl_str_mv 2010-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15030
Boyd, Christopher; Lassalle, Silvia Beatriz; Extreme and Exposed Points of Spaces of Integral Polynomials; American Mathematical Society; Proceedings Of The American Mathematical Society; 138; 4; 4-2010; 1415-1420
0002-9939
url http://hdl.handle.net/11336/15030
identifier_str_mv Boyd, Christopher; Lassalle, Silvia Beatriz; Extreme and Exposed Points of Spaces of Integral Polynomials; American Mathematical Society; Proceedings Of The American Mathematical Society; 138; 4; 4-2010; 1415-1420
0002-9939
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2010-138-04/S0002-9939-09-10158-2/S0002-9939-09-10158-2.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782459690090496
score 12.982451