Matrix-valued Gegenbauer-type polynomials
- Autores
- Koelink, Erik; De los Ríos, Ana M.; Román, Pablo Manuel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Koelink, Erik. Radboud Universiteit. Institute for Mathematics, Astrophysics and Particle Physics; Netherlands.
Fil: De los Ríos, Ana M. Universidad de Sevilla. Facultad de Matemáticas. Departamento de Análisis Matemático; España.
Fil: Román, Pablo Manuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Román, Pablo Manuel. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
We introduce matrix-valued weight functions of arbitrary size, which are analogues of the weight function for the Gegenbauer or ultraspherical polynomials for the parameter ν > 0. The LDU-decomposition of the weight is explicitly given in terms of Gegenbauer polynomials. We establish a matrix-valued Pearson equation for these matrix weights leading to explicit shift operators relating the weights for parameters ν and ν + 1. The matrix coefficients of the Pearson equation are obtained using a special matrix-valued differential operator in a commutative algebra of symmetric differential operators. The corresponding orthogonal polynomials are the matrix-valued Gegenbauer-type polynomials which are eigenfunctions of the symmetric matrix-valued differential operators. Using the shift operators, we find the squared norm, and we establish a simple Rodrigues formula. The three-term recurrence relation is obtained explicitly using the shift operators as well. We give an explicit nontrivial expression for the matrix entries of the matrix-valued Gegenbauer-type polynomials in terms of scalar-valued Gegenbauer and Racah polynomials using the LDU-decomposition and differential operators. The case ν = 1 reduces to the case of matrix-valued Chebyshev polynomials previously obtained using group theoretic considerations.
info:eu-repo/semantics/publishedVersion
Fil: Koelink, Erik. Radboud Universiteit. Institute for Mathematics, Astrophysics and Particle Physics; Netherlands.
Fil: De los Ríos, Ana M. Universidad de Sevilla. Facultad de Matemáticas. Departamento de Análisis Matemático; España.
Fil: Román, Pablo Manuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Román, Pablo Manuel. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
Matemática Pura - Materia
-
Matrix-valued orthogonal polynomials
Matrix-valued differential operators
Gegenbauer polynomials
Shift operator
Darboux factorization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/555133
Ver los metadatos del registro completo
| id |
RDUUNC_7722575888cdea97a11ac35857675a58 |
|---|---|
| oai_identifier_str |
oai:rdu.unc.edu.ar:11086/555133 |
| network_acronym_str |
RDUUNC |
| repository_id_str |
2572 |
| network_name_str |
Repositorio Digital Universitario (UNC) |
| spelling |
Matrix-valued Gegenbauer-type polynomialsKoelink, ErikDe los Ríos, Ana M.Román, Pablo ManuelMatrix-valued orthogonal polynomialsMatrix-valued differential operatorsGegenbauer polynomialsShift operatorDarboux factorizationFil: Koelink, Erik. Radboud Universiteit. Institute for Mathematics, Astrophysics and Particle Physics; Netherlands.Fil: De los Ríos, Ana M. Universidad de Sevilla. Facultad de Matemáticas. Departamento de Análisis Matemático; España.Fil: Román, Pablo Manuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Román, Pablo Manuel. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.We introduce matrix-valued weight functions of arbitrary size, which are analogues of the weight function for the Gegenbauer or ultraspherical polynomials for the parameter ν > 0. The LDU-decomposition of the weight is explicitly given in terms of Gegenbauer polynomials. We establish a matrix-valued Pearson equation for these matrix weights leading to explicit shift operators relating the weights for parameters ν and ν + 1. The matrix coefficients of the Pearson equation are obtained using a special matrix-valued differential operator in a commutative algebra of symmetric differential operators. The corresponding orthogonal polynomials are the matrix-valued Gegenbauer-type polynomials which are eigenfunctions of the symmetric matrix-valued differential operators. Using the shift operators, we find the squared norm, and we establish a simple Rodrigues formula. The three-term recurrence relation is obtained explicitly using the shift operators as well. We give an explicit nontrivial expression for the matrix entries of the matrix-valued Gegenbauer-type polynomials in terms of scalar-valued Gegenbauer and Racah polynomials using the LDU-decomposition and differential operators. The case ν = 1 reduces to the case of matrix-valued Chebyshev polynomials previously obtained using group theoretic considerations.info:eu-repo/semantics/publishedVersionFil: Koelink, Erik. Radboud Universiteit. Institute for Mathematics, Astrophysics and Particle Physics; Netherlands.Fil: De los Ríos, Ana M. Universidad de Sevilla. Facultad de Matemáticas. Departamento de Análisis Matemático; España.Fil: Román, Pablo Manuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Román, Pablo Manuel. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.Matemática Purahttps://orcid.org/0000-0002-2791-385X2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfKoelink, E., De los Ríos, A. M. y Román, P. M. (2017). Matrix-valued Gegenbauer-type polynomials. Constructive Approximation, 46 (3), 459-487. https://doi.org/10.1007/s00365-017-9384-40176-4276http://hdl.handle.net/11086/5551331432-0940https://doi.org/10.1007/s00365-017-9384-4enginfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-11-06T09:37:14Zoai:rdu.unc.edu.ar:11086/555133Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-11-06 09:37:14.319Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
| dc.title.none.fl_str_mv |
Matrix-valued Gegenbauer-type polynomials |
| title |
Matrix-valued Gegenbauer-type polynomials |
| spellingShingle |
Matrix-valued Gegenbauer-type polynomials Koelink, Erik Matrix-valued orthogonal polynomials Matrix-valued differential operators Gegenbauer polynomials Shift operator Darboux factorization |
| title_short |
Matrix-valued Gegenbauer-type polynomials |
| title_full |
Matrix-valued Gegenbauer-type polynomials |
| title_fullStr |
Matrix-valued Gegenbauer-type polynomials |
| title_full_unstemmed |
Matrix-valued Gegenbauer-type polynomials |
| title_sort |
Matrix-valued Gegenbauer-type polynomials |
| dc.creator.none.fl_str_mv |
Koelink, Erik De los Ríos, Ana M. Román, Pablo Manuel |
| author |
Koelink, Erik |
| author_facet |
Koelink, Erik De los Ríos, Ana M. Román, Pablo Manuel |
| author_role |
author |
| author2 |
De los Ríos, Ana M. Román, Pablo Manuel |
| author2_role |
author author |
| dc.contributor.none.fl_str_mv |
https://orcid.org/0000-0002-2791-385X |
| dc.subject.none.fl_str_mv |
Matrix-valued orthogonal polynomials Matrix-valued differential operators Gegenbauer polynomials Shift operator Darboux factorization |
| topic |
Matrix-valued orthogonal polynomials Matrix-valued differential operators Gegenbauer polynomials Shift operator Darboux factorization |
| dc.description.none.fl_txt_mv |
Fil: Koelink, Erik. Radboud Universiteit. Institute for Mathematics, Astrophysics and Particle Physics; Netherlands. Fil: De los Ríos, Ana M. Universidad de Sevilla. Facultad de Matemáticas. Departamento de Análisis Matemático; España. Fil: Román, Pablo Manuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Román, Pablo Manuel. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina. We introduce matrix-valued weight functions of arbitrary size, which are analogues of the weight function for the Gegenbauer or ultraspherical polynomials for the parameter ν > 0. The LDU-decomposition of the weight is explicitly given in terms of Gegenbauer polynomials. We establish a matrix-valued Pearson equation for these matrix weights leading to explicit shift operators relating the weights for parameters ν and ν + 1. The matrix coefficients of the Pearson equation are obtained using a special matrix-valued differential operator in a commutative algebra of symmetric differential operators. The corresponding orthogonal polynomials are the matrix-valued Gegenbauer-type polynomials which are eigenfunctions of the symmetric matrix-valued differential operators. Using the shift operators, we find the squared norm, and we establish a simple Rodrigues formula. The three-term recurrence relation is obtained explicitly using the shift operators as well. We give an explicit nontrivial expression for the matrix entries of the matrix-valued Gegenbauer-type polynomials in terms of scalar-valued Gegenbauer and Racah polynomials using the LDU-decomposition and differential operators. The case ν = 1 reduces to the case of matrix-valued Chebyshev polynomials previously obtained using group theoretic considerations. info:eu-repo/semantics/publishedVersion Fil: Koelink, Erik. Radboud Universiteit. Institute for Mathematics, Astrophysics and Particle Physics; Netherlands. Fil: De los Ríos, Ana M. Universidad de Sevilla. Facultad de Matemáticas. Departamento de Análisis Matemático; España. Fil: Román, Pablo Manuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Román, Pablo Manuel. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina. Matemática Pura |
| description |
Fil: Koelink, Erik. Radboud Universiteit. Institute for Mathematics, Astrophysics and Particle Physics; Netherlands. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| status_str |
publishedVersion |
| format |
article |
| dc.identifier.none.fl_str_mv |
Koelink, E., De los Ríos, A. M. y Román, P. M. (2017). Matrix-valued Gegenbauer-type polynomials. Constructive Approximation, 46 (3), 459-487. https://doi.org/10.1007/s00365-017-9384-4 0176-4276 http://hdl.handle.net/11086/555133 1432-0940 https://doi.org/10.1007/s00365-017-9384-4 |
| identifier_str_mv |
Koelink, E., De los Ríos, A. M. y Román, P. M. (2017). Matrix-valued Gegenbauer-type polynomials. Constructive Approximation, 46 (3), 459-487. https://doi.org/10.1007/s00365-017-9384-4 0176-4276 1432-0940 |
| url |
http://hdl.handle.net/11086/555133 https://doi.org/10.1007/s00365-017-9384-4 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
| reponame_str |
Repositorio Digital Universitario (UNC) |
| collection |
Repositorio Digital Universitario (UNC) |
| instname_str |
Universidad Nacional de Córdoba |
| instacron_str |
UNC |
| institution |
UNC |
| repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
| repository.mail.fl_str_mv |
oca.unc@gmail.com |
| _version_ |
1848046202824687616 |
| score |
12.976206 |